Label Embedding for Text Recognition

author: José A. Rodriguez, Xerox Research Centre Europe, Xerox
published: April 3, 2014,   recorded: September 2013,   views: 2517


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The standard approach to recognizing text in images consists in first classifying local image regions into candidate characters and then combining them with high-level word models such as conditional random fields (CRF). This paper explores a new paradigm that departs from this bottom-up view. We propose to embed word labels and word images into a common Euclidean space. Given a word image to be recognized, the text recognition problem is cast as one of retrieval: find the closest word label in this space. This common space is learned using the Structured SVM (SSVM) framework by enforcing matching label-image pairs to be closer than non-matching pairs. This method presents the following advantages: it does not require costly pre- or post-processing operations, it allows for the recognition of never-seen-before words and the recognition process is efficient. Experiments are performed on two challenging datasets (one of license plates and one of scene text) and show that the proposed method is competitive with standard bottom-up approaches to text recognition.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: