Sparse-Coded Features for Image Retrieval

author: Tiezheng Ge, University of Science and Technology of China
published: April 3, 2014,   recorded: September 2013,   views: 2913


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


State-of-the-art image retrieval systems typically represent an image with a bag of low-level features. Since different images often exhibit different kinds of low-level characteristics, it is desirable to represent an image with multiple types of complementary features. The systems scalability is, however, significantly lowered when increasing the number of feature types, as the amount of data is also increased rapidly both in index and in query representation.
In this paper, we apply sparse coding to derive a compact yet discriminative image representation from multiple types of features for large-scale image retrieval. We first convert each feature descriptor into a sparse code, and aggregate each type of sparsecoded features into a single vector by max-pooling. Multiple vectors from different types of features are then concatenated and compressed to obtain the final representation. Our approach allows us to add more types of features to improve discriminability without sacrificing scalability. In particular, we design a new micro feature which is complementary to existing local invariant features. By combining our micro feature with various local invariant features using the sparse-coding framework, our final compact representation outperforms the state of the art both in retrieval performance and in scalability.

See Also:

Download slides icon Download slides: bmvc2013_ge_image_retrieval_01.pdf (1.6┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: