Solving Person Re-identification in Non-overlapping Camera using Efficient Gibbs Sampling

author: Gwenn Englebienne, University of Amsterdam
published: April 3, 2014,   recorded: September 2013,   views: 2462


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This paper proposes a novel probabilistic approach for appearance-based person reidentification in non-overlapping camera networks. It accounts for varying illumination, varying camera gain and has low computational complexity. More specifically, we present a graphical model where we model the person’s appearance in addition to camera illumination and gain. We analytically derive the solutions for the person’s appearance and camera properties, and use a novel constant time Gibbs sampling scheme to estimate the identification labels. We validate our algorithm on two indoor datasets and perform a comparative analysis with existing algorithms. We demonstrate significantly increased re-identification accuracy in addition to significantly reducing the computational complexity on our datasets.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: