Multi-view Pictorial Structures for 3D Human Pose Estimation

author: Sikandar Amin, Faculty of Informatics, TU Munich
published: April 3, 2014,   recorded: September 2013,   views: 3237


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Pictorial structure models are the de facto standard for 2D human pose estimation. Numerous refinements and improvements have been proposed such as discriminatively trained body part detectors, flexible body models, and local and global mixtures. While these techniques allow to achieve state-of-the-art performance for 2D pose estimation, they have not yet been extended to enable pose estimation in 3D. This paper thus proposes a multi-view pictorial structures model that builds on recent advances in 2D pose estimation and incorporates evidence across multiple viewpoints to allow for robust 3D pose estimation. We evaluate our multi-view pictorial structures approach on the HumanEva-I and MPII Cooking dataset. In comparison to related work for 3D pose estimation our approach achieves similar or better results while operating on single-frames only and not relying on activity specific motion models or tracking. Notably, our approach outperforms state-of-the-art for activities with more complex motions.

See Also:

Download slides icon Download slides: bmvc2013_amin_pictorial_structures_01.pdf (2.0┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: