Learning equivalence classes of directed acyclic latent variable models from multiple datasets with overlapping variables, incl. discussion by Ricardo Silva

author: Ricardo Silva, University College London
author: Robert E. Tillman, Carnegie Mellon University
published: May 6, 2011,   recorded: April 2011,   views: 3885


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


While there has been considerable research in learning probabilistic graphical models from data for predictive and causal inference, almost all existing algorithms assume a single dataset of i.i.d. observations for all variables. For many applications, it may be impossible or impractical to obtain such datasets, but multiple datasets of i.i.d. observations for different subsets of these variables may be available. Tillman et al. [2009] showed how directed graphical models learned from such datasets can be integrated to construct an equivalence class of structures over all variables. While their procedure is correct, it assumes that the structures integrated do not entail contradictory conditional independences and dependences for variables in their intersections. While this assumption is reasonable asymptotically, it rarely holds in practice with finite samples due to the frequency of statistical errors. We propose a new correct procedure for learning such equivalence classes directly from the multiple datasets which avoids this problem and is thus more practically useful. Empirical results indicate our method is not only more accurate, but also faster and requires less memory.

See Also:

Download slides icon Download slides: aistats2011_tillman_learning_01.pdf (1.5┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: