Focused belief propagation for query-specific inference

author: Anton Chechetka, Robotics Institute, School of Computer Science, Carnegie Mellon University
published: June 3, 2010,   recorded: May 2010,   views: 3373


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


With the increasing popularity of large-scale probabilistic graphical models, even "lightweight" approximate inference methods are becoming infeasible. Fortunately, often large parts of the model are of no immediate interest to the end user. Given the variable that the user actually cares about, we show how to quantify edge importance in graphical models and to significantly speed up inference by focusing computation on important parts of the model. Our algorithm empirically demonstrates convergence speedup by multiple times over state of the art

See Also:

Download slides icon Download slides: aistats2010_chechetka_fbpfq_01.pdf (1008.6┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: