Lecture 23 - The Mutual Fund Theorem and Covariance Pricing Theorems

author: John Geanakoplos, Yale University
recorded by: Yale University
published: March 17, 2012,   recorded: December 2009,   views: 2736
released under terms of: Creative Commons Attribution No Derivatives (CC-BY-ND)
Categories

See Also:

Download Video - generic video source Download yalemecon251f09_geanakoplos_lec23_01.mp4 (Video - generic video source 874.5 MB)

Download Video Download yalemecon251f09_geanakoplos_lec23_01.flv (Video 380.4 MB)

Download Video Download yalemecon251f09_geanakoplos_lec23_01.wmv (Video 343.4 MB)

Download subtitles Download subtitles: TT/XML, RT, SRT


Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

This lecture continues the analysis of the Capital Asset Pricing Model, building up to two key results. One, the Mutual Fund Theorem proved by Tobin, describes the optimal portfolios for agents in the economy. It turns out that every investor should try to maximize the Sharpe ratio of his portfolio, and this is achieved by a combination of money in the bank and money invested in the "market" basket of all existing assets. The market basket can be thought of as one giant index fund or mutual fund. This theorem precisely defines optimal diversification. It led to the extraordinary growth of mutual funds like Vanguard. The second key result of CAPM is called the covariance pricing theorem because it shows that the price of an asset should be its discounted expected payoff less a multiple of its covariance with the market. The riskiness of an asset is therefore measured by its covariance with the market, rather than by its variance. We conclude with the shocking answer to a puzzle posed during the first class, about the relative valuations of a large industrial firm and a risky pharmaceutical start-up.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: