Speech Recognition and Deep Learning

Adam Coates

Silicon Valley AI Lab
Speech recognition

• Important goal of AI research:
 – Lots of applications
 • Video/voice transcripts
 • Natural interface to services and devices
 – Transcription is often easy for people.
 • Historically really hard for machines.
Speech recognition

• High-level goal: given speech audio, generate a transcript.
Speech recognition

• Difficulty depends on many factors.
 – Type of speech:
 • Conversational versus read.
 – Variations in tempo, volume.
 – Natural speaker variation
 – Pronunciation and accents
 – Disfluency (repeated words, stuttering, uhms)
 – Environment: Signal to noise ratio; reverb.
 – Lombard effect
 – Large [likely superhuman] vocabulary.

• Very hard to engineer around all of these! Great place for DL to make a difference.
Outline

• Traditional speech models
 – Still dominant architecture behind state-of-the-art systems.
 – Commonly assumed throughout literature.

Think of this as DL Survival School for speech.

• Deep Learning for speech recognition
 – Direct improvements on traditional method.
 – CTC and end-to-end learning.
TRADITIONAL SPEECH MODELS
Basic pipeline

• Represents wide range of current practice.
 – Will gloss over some algorithmic details.
 – If DL community is successful, a lot may go away!
Basic pipeline

- Goal: given raw audio, convert to sequence of characters.

\[X = [x_1 x_2 \ldots] \]

Audio wave

Hello world

\[W^* = [w_1 w_2] = \arg\max_W P(W|X) \]
Basic pipeline

• In practice, systems factorize work into several components:

\[W^* = \underset{W}{\text{argmax}} \ P(W|X) \]
\[= \underset{W}{\text{argmax}} \ P(O|W)P(W) \]
Basic pipeline

• Usually represent words as sequence of “phonemes”:

\[w_1 = \text{“hello”} = [\text{HH AH L OW}] = [q_1 q_2 q_3 q_4] \]

• Phonemes are the perceptually distinct units of sound that distinguish words.
 – Quite approximate... but sorta standardized-ish.
 – Some labeled corpora available (e.g., TIMIT)

<table>
<thead>
<tr>
<th>Phone Label</th>
<th>Example</th>
<th>Phone Label</th>
<th>Example</th>
<th>Phone Label</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>iy</td>
<td>beet</td>
<td>22</td>
<td>ch</td>
<td>choke</td>
</tr>
<tr>
<td>2</td>
<td>ih</td>
<td>bit</td>
<td>23</td>
<td>b</td>
<td>bee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>en</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>button</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>eng</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Washington</td>
</tr>
</tbody>
</table>
Basic pipeline

- Traditional systems usually model phoneme sequences instead of words. This necessitates a dictionary or other model to translate.
Basic pipeline

- We’ll just use a dictionary: only allow 1 pronunciation.

\[W^* = \arg \max_W P(W|X) = \arg \max_W P(O|Q(W))P(W) \]
Features

• As with most ML tasks, first want to convert raw input into more convenient features.
 – Spectrograms
 – MFCC (Mel Frequency Cepstral Coefficients)
 – PLP, RASTA [Hermansky, 1990; 1994]
 – “Delta” features
Example: Spectrogram

- Take a small window (e.g., 20ms) of waveform.
 - Compute FFT and take magnitude. (i.e., power)
 - Describes frequency content in local window.

```
|FFT(X)|^2
```

```
“Hello world”
```

20ms
Example: Spectrogram

• Concatenate frames from adjacent windows to form "spectrogram".
Acoustic model

- We need a model of $P(O|Q)$: a generative model of features (e.g., spectrogram) given phoneme sequence Q.

- Start with a simpler case: a single phoneme q.
- Model sequence of observations generated while speaking q using HMM.
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \Sigma_j)$

[Images of a state diagram are shown with states labeled 0 to 4 and transition probabilities labeled a_{ij}]
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \sum_j)$
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \Sigma_j)$

[Figure of a 5-state HMM with transitions labeled a_{ij} and a frame o_1]
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \Sigma_j)$

[Gales & Young, 2008]
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}({\mu}_j, {\Sigma}_j)$

[Diagram of state transitions and emission probabilities]

[Gales & Young, 2008]
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \Sigma_j)$

[Gales & Young, 2008]
Modeling 1 phoneme

• Use an HMM with simple “left-to-right” state structure.
 – Think of generating process as a state machine.
 • Start in state 0 at t=0.
 • At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 • After each jump generate a frame according to $P(o_t|s_t)$.
 – E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \Sigma_j)$

[Gales & Young, 2008]
Modeling 1 phoneme

- Use an HMM with simple “left-to-right” state structure.
 - Think of generating process as a state machine.
 - Start in state 0 at t=0.
 - At each time step: Jump from state $s_t=i$ to state $s_{t+1}=j$ with probability a_{ij}
 - After each jump generate a frame according to $P(o_t|s_t)$.
 - E.g., use $P(o_t|s_t=j) = \text{Gaussian}(\mu_j, \Sigma_j)$

[Diagram of state transitions]

[Gales & Young, 2008]
Inference with 1 phoneme

• We now have HMM with parameters \(\{a_{ij}, \mu_j, \Sigma_j\} \)
 – Given an observation sequence, \(o_1 o_2 \ldots o_T \) we can:
 • Find most likely sequence of internal states \(s_1 s_2 \ldots s_T \) that generated \(O \).
 – Viterbi algorithm.

![Diagram of HMM with states and observations](image-url)

Given observations:

Viterbi output: \[
\begin{array}{cccccccc}
0 & 1 & 1 & 2 & 3 & 3 & 3 & 4
\end{array}
\]

[Gales & Young, 2008]
Inference with 1 phoneme

• We now have HMM with parameters \{a_{ij}, \mu_j, \Sigma_j\}
 – Given an observation sequence, o_1 o_2 o_T we can:
 • Find most likely sequence of internal states s_1 s_2 ... s_T that generated O.
 – Viterbi algorithm.

• Also: Compute likelihood of observations \(P(O|q)\) by summing over all possible state sequences in the HMM for q.

\[
P(O|q) = \sum_{S} P(O|S)P(S|q)
\]

• Solved with forward-backward algorithm. (This is the acoustic model likelihood we wanted!)

[Gales & Young, 2008]
Modeling a word

• Given a phoneme sequence (word) we can “construct” a word-level HMM by stringing state machines together.

\[P(O|Q = q_1 q_2) \]

[Gales & Young, 2008]
Training from sentences

• Sentence is just a sequence of word models.
 1. Convert sentence into sequence of phonemes.
 2. Define HMM by composing phoneme models.

• Training:
 – We have a fixed HMM structure defined by sentence.
 – We have observations (training data) generated by the HMM.
 – Use Expectation-Maximization (EM; aka Baum-Welch)

 – E-step: Inference to find hidden state posterior \(P(s|O) \)
 • Use forward-backward.
 – M-step: Update parameters to maximize likelihood of \(O \).
Training from sentences

• Sadly, EM is not guaranteed to give us a good answer. What can go wrong?
• Illustration: imagine E-step just computes most likely state sequence.

This corresponds to an alignment between observations and phonemes. If we get it wrong, parameter update might be poor. E.g., tune observation models for wrong phoneme.
Obstacles...

• Lots of tricks to get this to work well.
 – E.g., initialize observation models by pre-training from small corpus of annotated data.
Language modeling

• In addition to acoustic model, need LM: \(P(W) \)

 – Many options, but a few desiderata are important:
 • Reasonably fast to query.
 – Used inside decoder.
 • Ability to train on huge corpora.
 – Make up for relative paucity of speech data.
 • Ability to train quickly.
 – Production systems often want to deal with shifting/trending vocabulary.

• Very common default: N-gram model.

 – \(P(w_k | w_{k-1}, w_{k-2}, ..., w_{k-N+1}) \)
 • Lots of smoothing tricks to be used with large N.
 • See, e.g., [Jurafsky & Martin, 2000] for intro.
Putting it together

\[
W^* = \arg\max_W P(W|X) \\
= \arg\max_W P(O|Q(W))P(W)
\]
Decoder

- Basic problem: search for sequence of words $W = w_1 w_2 \ldots w_k$ to maximize $P(W|X)$.

$$W^* = \arg\max_{W} P(W|X)$$

$$= \arg\max_{W} P(O|Q(W))P(W)$$
Decoder

• Basic problem: search for sequence of words $W = w_1 \ldots w_K$ to maximize $P(W | X)$.

$$W^* = \arg\max_W P(W | X)$$
$$= \arg\max_W P(O | Q(W)) P(W)$$
$$= \arg\max_W \sum_S P(O | S) P(S | Q(W)) P(W)$$

− Many strategies to do this. Often complex.
− Here: simplify the problem to illustrate idea.
 • Only look for most likely state sequence S.
 • Note: if we fix a choice of S, this gives us Q and W.
Decoder

• Simple problem: two word vocabulary.
 – “Hi” [HH AY] or “Guy” [G AY].
 – Language model:
 • \(P(\text{Guy}|\text{Hi}) = 0.9; P(\text{Hi}|\text{Hi}) = 0.1 \)
 • \(P(\text{Hi}|\text{Guy}) = 0.5; P(\text{Guy}|\text{Guy}) = 0.5 \)
 – HMM acoustic models like earlier.
Decoder visualization

• Let’s build entire HMM:

End of phoneme + word transition: $P(s_{t+1}|s_t=8) \times P(Hi|Hi)$

Want to find state sequence that maximizes probability of observations.
Decoder

• Finding most likely sequence is easy with Viterbi!

 – Main issues:
 • Not practical for big problems.
 • We chose a bigram language model! Bigger N-gram would violate the Markov assumption.
 – Dynamic programming no longer works. :-(

• In practice: use general search formalism.

 – E.g., Beam search.
Decoder

• Beam search:
 – Keep a list of top N candidate partial state sequences.
 – Propose extensions (next state) for each candidate.
 – If we had entire state sequence, likelihood is:

\[
\log P(O|S) + \log P(S|Q(W)) + \log(P(W)) = \\
\sum_t \log P(O_t|S_t) + \log P(S_t|S_{t-1}) + \sum_k \log P(W_k|W_{k-1})
\]

– During search, keep track of partial sum:

\[
\sum_{t=1}^{t'} \log P(O_t|S_t) + \log P(S_t|S_{t-1}) + \sum_{k=1}^{K'} \log P(W_k|W_{k-1})
\]

Observations and state transitions so far. Words in sequence so far.
Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

"Hi"

```
HH
1 2 3
AY
6 7 8
```

Add log P(s_2 | s_1)

"Guy"

```
G
9 10 11
AY
12 13 14
```
Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

“Hi”

HH

AY

“Guy”

G

AY

Keep top 2 candidates.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

"Hi"

HH

AY

1 2 3

6 7 8

Add log P(s_{k+1}|s_{k})

Add log P(W_{k+1}|W_{k})

“Guy”

G

AY

9 10 11

12 13 14

0
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

"Hi"

Fast forward
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.
Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

Recorded state sequence S: 1 2 3 6 7 8 9 10 11 12 13 14
Phoneme sequence Q: HH AY G AY
Word sequence W: Hi Guy
Is that all?

• No.
 – Highly simplified model here, but with all the major moving pieces.

• More components of real systems:
 – Phoneme models → Triphones (HH-AH-LL)
 – Normalization and noise filtering.
 – Speaker adaptation
 • “Vocal Tract Length Normalization”
DEEP LEARNING!
Where can DL help?
Basic pipeline

- We’ll just use a dictionary: only allow 1 pronunciation.

\[W^* = \arg\max_W P(W|X) \]
\[= \arg\max_W P(O|Q(W))P(W) \]
DNN acoustic models

• One classic improvement: HMM+DNN
 – Basic idea: Enhance P(O|Q) with neural network.
 – Still re-use HMM machinery to model sequences, words, etc.
 • So usually only aim to replace P(O|S)

Usually we work with DNNs that are trained for a discriminative task:

Take in O, make a prediction.

But here trying to plug into generative model.
DNN acoustic models

- Clearly: DNN useful to model $P(s|o)$ if we know the target for s.

HMM state: $P(s|o)$?

Hidden Units

Hidden Units

Features, o

Discrete label s \rightarrow Predict with softmax neurons

$$a = Wh + b$$

$$y_i = P(s_i|o) = \exp(a_i) / \sum_j \exp(a_j)$$

Sigmoid or ReLu units.

Speech frame
DNN acoustic models

• Where do we get targets for $P(s|o)$?
 • Use standard pipeline to find most likely state sequence, S, for training utterance input, O.
 - Recall: We have word labels, so this is just “alignment”.
 - Hack up into training pairs s_t and o_t for DNN.
 • Use a small carefully annotated training set to train DNN (bootstrap), re-run alignment, retrain.
 • Train to predict phonemes directly: $P(q|o)$.
 - Phoneme-annotated data (bootstrap) is more plentiful.
 - Can rework HMMs so that emission/observation from “hidden” state is phoneme itself.
DNN acoustic models

• But we want observation model $P(o|s)$ to integrate into HMM framework.
 – Bayes rule:

$$P(o|s) = P(s|o)P(o)/P(s)$$

$$P(o|s) \propto P(s|o)/P(s)$$

Introduces harmless constant into recognizer since o is given.

• Thus, normalize output of DNN by prior probability of state.
 – Just take empirical frequency of state in training data.
 – If you’re getting great frame accuracy but poor word accuracy, this can be culprit. Especially when labels are skewed.
Early wins for DNN models

• From Dahl et al., ICASSP 2011:

<table>
<thead>
<tr>
<th>DBN-HMM</th>
<th>5</th>
<th>from DBN-HMM</th>
<th>Triphone Senones</th>
<th>yes</th>
<th>71.8%</th>
<th>69.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML GMM-HMM baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.9%</td>
<td>60.4%</td>
</tr>
<tr>
<td>MMI GMM-HMM baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65.1%</td>
<td>62.8%</td>
</tr>
<tr>
<td>MPE GMM-HMM baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65.5%</td>
<td>63.8%</td>
</tr>
<tr>
<td>ML GMM-HMM baseline 2100 hours of training data (transcription is 90% accurate)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.9% [13]</td>
</tr>
</tbody>
</table>

• ~10% relative improvement with DBN.
 – Later results improve with ReLu and Dropout.
More powerful acoustic models

• Can replace DNN with more powerful networks.
 – E.g., use large context, or recurrent network (RNN).
Rescoring

• Another place to plug in better algorithms: Systems usually produce N-best list. Use fancier algorithms to “rescore” (pick best)
Rescoring with Neural LM

• Example: train neural language model and rescore word transcriptions.
 – Cheap to evaluate \(P(w_k|w_{k-1}, w_{k-2}, \ldots, w_1) \) NLM on many sentences.
 – In practice, often combine with N-gram trained from big corpora.

1. (-25.45) I’m a connoisseur looking for wine and porkchops. -24.45
2. (-26.32) I’m a connoisseur looking for wine and port shops. -23.45
3. ...
4. ...
5. ...
TRAINING FROM UNSEGMENTED DATA WITH CTC
Complexity

• Alignment and bootstrapping makes training cumbersome and error prone.

• What if we could train acoustic model without alignment step?
 – One proposal by Graves et al., ICML 2006: “Connectionist Temporal Classification” (CTC)
Network setup

- We create a neural network that outputs sequence of “probability vectors” \(y_t = P(q_t | O) \) of same length as input.

- Assume that \(P(Q | O) = \prod_t P(q_t | O) \).

- Allow \(q \) to take “blank” value so that \(Q \) can be same length as \(O \).

\[y_{1,17} = P(q_{17} = iy | O) \]
Problem

• We don’t know phoneme alignment with input, so can’t train supervised directly.
 – Previously, we solved this by letting EM “guess” the alignment iteratively.
 – We want alignment to be irrelevant.

• Solution idea: introduce an operation that makes the transcription from $P(q|o)$ “invariant” to misalignment.
Collapsing operator

• Suppose we start with decent predictions $y_t = P(q_t \mid O)$ from a neural network.

• Consider a string sampled from this distribution:

 _ _ _ _ HH HH HH _ _ _ _ AH AH _ _ L L L _ _ OW _ _ _

• Make true “transcription” invariant by removing repeats, then blanks:

 HH AH L OW == “Hello”

• Under this operation, these also map to “Hello”:

 _ _ _ _ _ _ HH HH _ _ _ _ AH AH _ _ L L L _ _ OW _ _ _ _ _ _
 _ _ _ _ _ _ _ _ _ _ HH AH _ _ _ _ L L L L L L L L L _ _ OW OW OW OW _ _ _ _ _
Likelihood of a sequence

• Want to compute likelihood of a label sequence:

\[q_1 \ q_2 \ q_3 \ q_4 = HH \ \text{AH} \ L \ OW \]

• Sum over all possible transcriptions that collapse to the label string:

\[
P(q_1 \ q_2 \ q_3 \ q_4 | O) = P(_ _ _ _ HH \ HH \ HH _ _ _ _ _ AH \ AH _ _ _ _ _ L \ L \ L _ _ _ OW _ _ _ _ _) \\
+ P(HH \ HH _ _ _ _ _ AH \ AH _ _ _ _ _ L \ L \ L _ _ _ OW _ _ _ _ _ _ _ _ _) \\
+ P(_ _ _ HH \ AH _ _ _ _ _ _ _ _ \ L \ L \ L \ L \ L \ L \ L _ _ _ OW \ OW \ OW _ _ _ _ _ _ _ _ _) \\
+ _ _ _ _ ...
\]

For fixed Q, Graves et al. give a forward-backward algorithm to compute this summation!
Training

• We want to do gradient ascent to maximize likelihood of a training label. We need:

\[\nabla_\theta P(Q|O) = \]

\[\nabla_\theta P(q_1q_2 \ldots q_K|O) = \]
Training

• We want to do gradient ascent to maximize likelihood of a training label. We need:

\[
\nabla_\theta P(Q|O) = \\
\nabla_\theta P(q_1q_2 \ldots q_K|O) = \\
\n\nabla_\theta \sum_{\hat{Q}:\text{collapse}(\hat{Q})=Q} P_{net}(\hat{q}_1\hat{q}_2 \ldots \hat{q}_T|O)
\]

Luckily, output of forward-backward algorithm can be used to compute gradient, including summation.
Training

• What happens?

\[y_{it} = P(q_t = i | O) \]

[From Graves et al., 2006]
Decoding

• Given outputs, we still need to find most likely sequence and convert to words.
 – I.e., want to compute:

\[
\arg \max_Q P(Q|O)) = \arg \max_Q \sum_{\hat{Q}: \text{collapse}(\hat{Q})=Q} P_{\text{net}}(\hat{q}_1\hat{q}_2\ldots\hat{q}_T|O)
\]
Decoding

• Quick and dirty solution:

\[
\arg\max_{Q} P(Q|O))
\approx \text{collapse}(\arg\max_{\hat{Q}} P_{net}(\hat{q}_1 \hat{q}_2 \ldots \hat{q}_T|O))
\]

• Not guaranteed to be best sequence, but useful sanity-check.
Decoding

• Alternatively, resort to beam search over Q, as with traditional systems.
 – Can also incorporate LM score at this point as with traditional systems.
 • See, Hannun, Maas, Jurafsky & Ng, 2014.

• Or: don’t bother to decode and just use $P(Q|O)$ to rescore N-best from traditional baseline.
End-to-end learning

• No fundamental reason we must use phonemes.

- Jettison HMM infrastructure for transcribing phonemes/words, and use CTC to transcribe directly to characters/graphemes.
 - Let neural network (RNN) do all the work.
 • See, e.g., Graves & Jaitly, ICML 2014.
 • Still probably want LM.

• No major changes to training algorithm!
 - But needs a lot of training data / large models to compete with traditional systems.
 - Yet much simpler to build (Hannun et al., 2014).
End-to-end learning

- Graves & Jaitly, 2014:

- Caveat: character transcription leads to “hearing errors” cropping up.

- These can be hard to fix with language model because words look very different though sound the same.
Example transcriptions

• End-to-end networks can still work well on their own, but LM is still needed.

Max Decoding:
what is the weather like in bostin right now
prime miniter nerenr modi
arther n tickets for the game

LM Decoding:
what is the weather like in boston right now
prime minister narendra modi
are there any tickets for the game

From Hannun et al., 2014.
Conclusion

• Traditional HMM-DNN hybrid speech system still very common in the wild.
 – Multiple places for DL to plug in and make improvements.

• More recent trend: replace with more end-to-end DL approach.
 – Speech works *significantly* better today due to DL.
 – Next wave of DL systems should be even better as end-to-end methods supplant engineering.
Thank you

Special thanks to Awni Hannun for his help checking these slides.
References

• Hannun, Maas, Jurafsky, Ng. “First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs” ArXiv:1408.2873

