A Survey on Mouth Modeling and Analysis for Sign Language Recognition

Epameinondas Antonakos* Anastasios Roussos* Stefanos Zafeiriou*

Imperial College London

^{*}The authors contributed equally and have joint first authorship. The names appear in alphabetical order.

Outline

- Is mouth linguistically significant for Sign Language?
- Review of existing methods of mouth modeling for Automatic Sign Language Recognition.
- Future work, challenges and potentials.

Outline

- Is mouth linguistically significant for Sign Language?
- Review of existing methods of mouth modeling for Automatic Sign Language Recognition.
- Future work, challenges and potentials.

Sign Language (SL)

- About 5% of the worldwide population suffers from hearing loss to some degree.
- 1% of the worldwide population use SLs as their native languages (~70 million deaf people).
- SLs are also used from people who cannot physically speak (mutism).
- There is not a unique international SL. Each country has its own, so there are hundreds of different SLs.

Automatic SL Recognition

- Deaf people encounter many difficulties in the every day life (education, work, use of the internet, etc.):
 - Limited reading/writing skills in the spoken language (for them it is a foreign language with fundamentally different grammatical structure).
 - The vast majority of the rest of the population is unable to use SL.
- Automatic SL Recognition (ASLR) can greatly support the Deaf community.
- However, it is still far from being mature technology, especially compared to text-based interaction or speech recognition.

SL Structure

- SLs are as rich and grammatically complex as spoken languages.
- Manual articulators
 - Phonemes (basic semantic SL components)
 - Hands shape, posture, location and motion
- Non-manual articulators
 - Prosody, lexical distinction, grammatical structure, adjectival/adverbial content
 - Head and body pose, facial expressions (through eyes, eyebrows, cheeks, lips), mouth movements
- Mouth is one of the most involved parts of the face in non-manuals.

Mouth Actions

- Mouth lexical articulators are separated in:
 - 1) Mouth gestures:
 - Non-verbal components
 - Shape deformation, tongue movement, teeth visibility
 - 2) Mouthings:
 - Silent articulators that correspond to a pronounced word or part of it.
 - Visual syllables (in most SLs only the first syllable of a word is articulated).

Mouth Actions

- Some argue that mouth actions (especially mouthings) are not linguistically significant.
 - W. Sandler, D. Lillo-Martin. "Sign language and linguistic universals", Cambridge University Press, 2006.
 - A. Hohenberger, D. Happ. "The linguistic primacy of signs and mouth gestures over mouthing: Evidence from language production in german sign language", The hands are the head of the mouth: the mouth as articulator in sign language", p. 153-189, Signum, 2001.
- Recent research has shown that they contribute significantly to the semantic analysis of SLs.
 - S. Liddell. "Grammar, gesture, and meaning in American Sign Language". Cambridge University Press, 2003.
 - M. Nadolske, R. Rosenstock. "Occurrence of mouthings in american sign language: a preliminary study", Trends in linguistics studies and monographs, 2007.
 - P. Boyes-Braem, R. Sutton-Spence. "The hands are the head of the mouth", Signum-Verlag, 2001.

Mouth Actions

- The frequency of mouth actions is different for each SL.
- It depends on both the context and the grammatical category of the manual sign they occur with.
- Most mouth actions have a prosodic interpretation while others have lexical meaning.
- In some cases, the mouth articulates physical events, emotions or sensations (types of sounds, noise, disturbances, heaviness, types of textures etc.).

Mouth Actions Examples

"late" in American SL: no mouth action

"not yet" in American SL: the tongue touches the lower lip

Source: ASL University (http://www.lifeprint.com/)

Intelligent Behaviour Understanding Group

Mouth Actions Examples

"brother" in German SL: mouth frown

"sister" in German SL: mouth stretch

Source: U. von Agris, M. Knorr, and K. F. Kraiss. "The significance of facial features for automatic sign language recognition", FG, 2008.

Intelligent Behaviour Understanding Group

Outline

- Is mouth linguistically significant for Sign Language?
- Review of existing methods of mouth modeling for Automatic Sign Language Recognition.
- Future work, challenges and potentials.

- **[1] Parashar:** A.S. Parashar. "Representation and interpretation of manual and non-manual information for automated american sign language recognition", PhD thesis, Univ. of South Florida, 2003.
- [2] v. Agris et al.: U. von Agris, M. Knorr, K. F. Kraiss. "The significance of facial features for automatic sign language recognition", FG, 2008.
- [3] v. Agris et al.: U. Von Agris, J. Zieren, U. Canzler, B. Bauer, K.F. Kraiss. "Recent developments in visual sign language recognition", Universal Access in the Information Society, 2008.
- **[4] Nguyen et al.:** T.D. Nguyen, S. Ranganath. "Facial expressions in american sign language: tracking and recognition", Pattern Recognition, 2011.
- **[5] Schmidt et al.:** C. Schmidt, O. Koller, H. Ney, T. Hoyoux, J. Piater. "Enhancing gloss-based corpora with facial features using active appearance models", ISSLTAT, 2013.
- [6] Schmidt et al.: C. Schmidt, O. Koller, H. Ney, T. Hoyoux, J. Piater. "Using viseme recognition to improve a sign language translation system", IWSLT, 2013.
- [7] Pfister et al.: T. Pfister, J. Charles, A. Zisserman. "Large-scale learning of sign language by watching tv (using co-occurrences)", BMVC, 2013.
- [8] Koller et al.: O. Koller, H. Ney, R. Bowden. "Read my lips: Continuous signer independent weakly supervised viseme recognition", ECCV, 2014.
- [9] Koller et al.: O. Koller, H. Ney, R. Bowden. "Weakly supervised automatic transcription of mouthings for gloss-based sign language corpora", LREC, 2014.
- [10] Benitez-Quiroz et al.: C.F. Benitez-Quiroz, K. Gokgoz, R.B. Wilbur, A.M. Martinez. "Discriminant features and temporal structure of nonmanuals in american sign language", PloS one, 2014.
- [11] Antonakos et al.: E. Antonakos, V. Pitsikalis, P. Maragos. "Classification of extreme facial events in sign language videos", EURASIP Image and Video Processing, 2014.
- **[12] Antonakos et al.:** E. Antonakos, V. Pitsikalis, I. Rodomagoulakis, P. Maragos. "Unsupervised classification of extreme facial events using active appearance models tracking for sign language videos", ICIP, 2012.

Intelligent Behaviour Understanding Group

- [1] **Parashar:** A.S. Parashar. "Representation and interpretation of manual and non-manual information for automated american sign language recognition", PhD thesis, Univ. of South Florida, **2003**.
- [2] v. Agris et al.: U. von Agris, M. Knorr, K. F. Kraiss. "The significance of facial features for automatic sign language recognition", FG, 2008.
- [3] v. Agris et al.: U. Von Agris, J. Zieren, U. Canzler, B. Bauer, K.F. Kraiss. "Recent developments in visual sign language recognition", Universal Access in the Information Society, **2008**.
- **[4] Nguyen et al.:** T.D. Nguyen, S. Ranganath. "Facial expressions in american sign language: tracking and recognition", Pattern Recognition, **2011**.
- **[5] Schmidt et al.:** C. Schmidt, O. Koller, H. Ney, T. Hoyoux, J. Piater. "Enhancing gloss-based corpora with facial features using active appearance models", ISSLTAT, **2013**.
- [6] Schmidt et al.: C. Schmidt, O. Koller, H. Ney, T. Hoyoux, J. Piater. "Using viseme recognition to improve a sign language translation system", IWSLT, 2013.
- [7] Pfister et al.: T. Pfister, J. Charles, A. Zisserman. "Large-scale learning of sign language by watching tv (using co-occurrences)", BMVC, **2013**.
- [8] Koller et al.: O. Koller, H. Ney, R. Bowden. "Read my lips: Continuous signer independent weakly supervised viseme recognition", ECCV, 2014.
- [9] Koller et al.: O. Koller, H. Ney, R. Bowden. "Weakly supervised automatic transcription of mouthings for gloss-based sign language corpora", LREC, 2014.
- [10] Benitez-Quiroz et al.: C.F. Benitez-Quiroz, K. Gokgoz, R.B. Wilbur, A.M. Martinez. "Discriminant features and temporal structure of nonmanuals in american sign language", PloS one, 2014.
- [11] Antonakos et al.: E. Antonakos, V. Pitsikalis, P. Maragos. "Classification of extreme facial events in sign language videos", EURASIP Image and Video Processing, 2014.
- **[12] Antonakos et al.:** E. Antonakos, V. Pitsikalis, I. Rodomagoulakis, P. Maragos. "Unsupervised classification of extreme facial events using active appearance models tracking for sign language videos", ICIP, **2012**.

Intelligent Behaviour Understanding Group

- There is limited work on mouth modeling for the task of ASLR.
- We categorize the existing works with respect to:
 - Mouth modeling and tracking method
 - Mouth features
 - Recognition/Classification technique
 - Linguistic phenomena
 - SL

- Mouth modeling and tracking categorization:
 - Elliptical structure: [1] Parashar
 - Active Appearance Model: [2,3] v. Agris et al. [5,6] Schmidt et al. [8,9] Koller et al. [11,12] Antonakos et al.
 - Kanade-Lucas-Tomasi: [4] Nguyen et al. [7] Pfister et al.
 - Manual Annotations: *[10] Benitez-Quiroz et al.*

- Mouth features categorization:
 - Shape/Geometric measures: [2,3] v. Agris et al.

[4] Nguyen et al. [5,6] Schmidt et al.

- Appearance: [1] Parashar
 [7] Pfister et al.
- Both: [8,9] Koller et al. [11,12] Antonakos et al.

- Recognition/Classification categorization:
 - Hidden Markov Model: [2,3] v. Agris et al. [4] Nguyen et al. [5,6] Schmidt et al. [8,9] Koller et al.
 - Support Vector Machine: [4] Nguyen et al.
 [7] Pfister et al.
 - Linear Discriminant Analysis: [10] Benitez-Quiroz et al.
 - Hierarchical Clustering: [11,12] Antonakos et al.

- Linguistic phenomena categorization:
 - Negation, Questions, Conditional/Relative clause, Assertions, Sign boundaries: [1] Parashar

[4] Nguyen et al.[10] Benitez-Quiroz et al.[11,12] Antonakos et al.

 Mouthings: [5,6] Schmidt et al. [8,9] Koller et al.
 [7] Pfister et al.

- SL categorization:
 - American: [1] Parashar

 [4] Nguyen et al.
 [10] Benitez-Quiroz et al.
 [11,12] Antonakos et al.
 - British: [7] Pfister et al.
 - German: [2,3] v. Agris et al. [5,6] Schmidt et al. [8,9] Koller et al.
 - Greek: [11,12] Antonakos et al.
- This is due to the existence of large annotated databases on these SLs.

Outline

- Is mouth linguistically significant for Sign Language?
- Review of existing methods of mouth modeling for Automatic Sign Language Recognition.
- Future work, challenges and potentials.

Challenges and Potentials

- Automatic analysis of mouth non-manuals is a very challenging problem
 - Occlusion by hands, intense mouthings, expressions and pose, tongue visibility, low resolution of the mouth region

(b) Mouthing

(c) Tongue

(d) Pose

- It can be separated in two sub-problems:
 - Automatic understanding of mouth-related expressions
 - 2) Automatic understanding of mouthings

Automatic understanding of mouth expressions

- It can greatly benefit from the extensive research on Automatic Analysis of Facial Expressions.
- It involves two main lines of research:
 - Message judgment Recognize the meaning (emotion) conveyed with a facial expression (e.g. six basic emotions).
 - Sign judgment

Recognize the physiological manifestation of a facial expression into its fundamental and, arguably, irreducible atoms, such as the movement of individual facial muscles (e.g. FACS).

Intelligent Behaviour Understanding Group

Imperial College London

Automatic understanding of mouth expressions

- Message judgment is not suitable for ASLR
 - Discrete set of predefined messages (expressions) that does not cover the full range of possible SL expressions.
 - There is no universal set of predefined SL expressions.
- Sign judgment is relevant to ASLR
 - Every possible facial expression can be comprehensively described as a combination of AUs.
 - AUs annotation is a hard task.

Automatic understanding of mouthings

- It can greatly benefit from the extensive research on Visual Speech Recognition.
- A viseme is a generic facial image that can be used to describe a particular sound (equivalent of phoneme in spoken language).
- Visemes and phonemes do not have one-to-one correspondence.
- There is existing research on representing visual speech data using latent variables.
- Viseme recognition is very challenging even for humans (reported error rate about 50%).

Conclusions

- Development of ASLR systems has the potential to support millions of Deaf people, as well as help linguists understand better SLs.
- ASLR has mainly concentrated on manual features.
- Recent research has shown that non-manuals (especially the mouth) play an important role.
- Very few papers attempt the fusion of manual and non-manual cues.
- Mouth modeling for ASLR can greatly benefit from the existing research in Facial Expressions Recognition and Visual Speech Recognition.

Thank you for your attention!

Intelligent Behaviour Understanding Group

Imperial College London