Bandit Convex Optimization: \(\sqrt{T} \) Regret in One Dimension

Sébastien Bubeck
Tomer Koren
Ofer Dekel
Yuval Peres
Bandit Convex Optimization

- **Adversary** picks convex \(f_1, f_2, \ldots, f_T : K \rightarrow [0,1] \) over convex \(K \subseteq \mathbb{R}^n \)
- On rounds \(t=1, \ldots, T \), **player**:
 1. chooses \(x_t \in K \) at random
 2. incurs loss \(f_t(x_t) \)
 3. observes \(f_t(x_t) \) and nothing else

- Player’s goal: minimize regret

\[
R_T = \mathbb{E} \left[\sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) \right]
\]
Bandit Convex Optimization

✦ **Adversary** picks convex $f_1, f_2, \ldots, f_T : K \to [0,1]$ over convex $K \subseteq \mathbb{R}^n$

✦ On rounds $t=1,\ldots,T$, player:
 1. chooses $x_t \in K$ at random
 2. incurs loss $f_t(x_t)$
 3. observes $f_t(x_t)$ and nothing else

✦ Player’s goal: minimize regret

$$R_T = \mathbb{E} \left[\sum_{t=1}^{T} f_t(x_t) - \min_{x \in K} \sum_{t=1}^{T} f_t(x) \right]$$

Thm: for $n=1$, there exists algorithm for which $R_T = \tilde{O}(\sqrt{T})$

Note: no additional assumptions (not even Lipschitz)
Previous results

- $T^{5/6}$ for general convex [Flaxman, Kalai, McMahan ’05]
- $T^{3/4}$ for Lipschitz [Flaxman, Kalai, McMahan ’05]
- $T^{1/2}$ for linear + Lipschitz [Dani et al ’08, Abernethy et al ’08]
- $T^{2/3}$ for strongly convex + Lipschitz [Agarwal et al ’10]
- $T^{2/3}$ for smooth [Saha & Tewari’ 11]
- $T^{1/2}$ for stochastic i.i.d. + Lipschitz [Agarwal et al ’11]
- $T^{1/2}$ for smooth + strongly convex [Hazan & Levy ’14]

Our result: first tight bound without further assumptions
Main ideas

1. Non-constructive analysis: don’t give an algorithm; instead, use minimax duality and attack the dual
Main ideas

1. Non-constructive analysis: don’t give an algorithm; instead, use minimax duality and attack the dual

2. Dual is Bayesian BCO: f_1, \ldots, f_T are RVs drawn from adversarial, yet known joint (non-i.i.d.) distribution
Main ideas

1. Non-constructive analysis: don’t give an algorithm; instead, use minimax duality and attack the dual

2. Dual is Bayesian BCO: f_1, \ldots, f_T are RVs drawn from adversarial, yet known joint (non-i.i.d.) distribution

3. Solve Bayesian problem with a variant of Thompson Sampling
Main ideas

1. Non-constructive analysis: don’t give an algorithm; instead, use minimax duality and attack the dual

2. Dual is Bayesian BCO: \(f_1, \ldots, f_T \) are RVs drawn from adversarial, yet known joint (non-i.i.d.) distribution

3. Solve Bayesian problem with a variant of Thompson Sampling

4. Bayesian regret analysis via information-theoretic arguments

[Russo & van Roy ’14]
Main ideas

1. Non-constructive analysis: don’t give an algorithm; instead, use **minimax duality** and attack the dual

2. Dual is **Bayesian BCO**: f_1, \ldots, f_T are RVs drawn from adversarial, yet **known joint** (non-i.i.d.) distribution

3. Solve Bayesian problem with a variant of **Thompson Sampling**

4. Bayesian regret analysis via information-theoretic arguments [**Russo & van Roy ’14**]

5. Novel use of convexity: new “**local-to-global**” property of convex functions