Large Scale Matrix Analysis and Inference

Wouter M. Koolen - Manfred Warmuth
Reza Bosagh Zadeh - Gunnar Carlsson - Michael Mahoney

Dec 9, NIPS 2013
Introductory musing — What is a matrix?

1. A vector of n^2 parameters
2. A covariance
3. A generalized probability distribution
4. ...
1. A vector of n^2 parameters

When you regularize with the squared Frobenius norm

$$\min_W \|W\|_F^2 + \sum_n \text{loss} (\text{tr}(WX_n))$$
1. A vector of n^2 parameters

When you regularize with the squared Frobenius norm

$$\min_W ||W||_F^2 + \sum_n \text{loss}(\text{tr}(WX_n))$$

Equivalent to

$$\min_{\text{vec}(W)} ||\text{vec}(W)||_2^2 + \sum_n \text{loss}(\text{vec}(W) \cdot \text{vec}(X_n))$$

No structure: n^2 independent variables
View the symmetric positive definite matrix C as a covariance matrix of some random feature vector $c \in \mathbb{R}^n$, i.e.

$$C = \mathbb{E} \left((c - \mathbb{E}(c))(c - \mathbb{E}(c))^{\top} \right)$$

n features plus their pairwise interactions
Symmetric matrices as ellipses

- **Ellipse** = \(\{ Cu : \|u\|_2 = 1 \} \)
- Dotted lines connect point \(u \) on unit ball with point \(Cu \) on ellipse
Symmetric matrices as ellipses

- Eigenvectors form **axes**
- Eigenvalues are lengths
Dyads

uu^T, where u unit vector

- One eigenvalue one
- All others zero
- Rank one projection matrix
Directional variance along direction \mathbf{u}

$$\nabla(\mathbf{c}^\top \mathbf{u}) = \mathbf{u}^\top \mathbf{C} \mathbf{u} = \text{tr}(\mathbf{C} \mathbf{u} \mathbf{u}^\top) \geq 0$$

The outer figure eight is direction \mathbf{u} times the variance $\mathbf{u}^\top \mathbf{C} \mathbf{u}$

PCA: find direction of largest variance
$\text{tr}(\mathbf{C uu}^\top)$ is generalized probability when $\text{tr}(\mathbf{C}) = 1$
3. Generalized probability distributions

Probability vector

\[\omega = (\cdot.2, \cdot.1, \cdot.6, \cdot.1)^\top \]
\[= \sum_i \omega_i \]

Density matrix

\[W = \sum_i \omega_i \]
\[e_i \]

Mixture coefficients

Pure events

Pure density matrices
3. Generalized probability distributions

Probability vector
\[\omega = (0.2, 0.1, 0.6, 0.1)^\top \]
\[= \sum_i \omega_i \]

\(\omega_i \) mixture coefficients
\(e_i \) pure events

Density matrix
\[W = \sum_i \omega_i w_i w_i^\top \]

\(\omega_i \) mixture coefficients
\(w_i w_i^\top \) pure density matrices

Matrices as generalized distributions
3. Generalized probability distributions

Probability vector

\[\omega = (0.2, 0.1, 0.6, 1)^\top \]

\[= \sum_i \omega_i \]

- mixture coefficients
- pure events

Density matrix

\[W = \sum_i \omega_i w_i w_i^\top \]

- mixture coefficients
- pure density matrices

Matrices as generalized distributions

- Many mixtures lead to same density matrix

\[0.2 + 0.3 \triangleleft + 0.5 = \begin{pmatrix} 0.35 & 0.15 \\ 0.15 & 0.65 \end{pmatrix} = \begin{pmatrix} 0.29 \\ 0.71 \end{pmatrix} \]

- There always exists a decomposition into \textit{n eigendyads}

- Density matrix: Symmetric positive matrix of trace one
It’s like a probability!

Total variance along orthogonal set of directions is 1

\[u_1^T W u_1 + u_2^T W u_2 = 1 \]

\[a + b + c = 1 \]
Uniform density?

- All dyads have generalized probability $\frac{1}{n}$

 \[
 \text{tr} \left(\frac{1}{n} uu^\top \right) = \frac{1}{n} \text{tr}(uu^\top) = \frac{1}{n}
 \]

- Generalized probabilities of n orthogonal dyads sum to 1
Conventional Bayes Rule

\[P(M_i|y) = \frac{P(M_i)P(y|M_i)}{P(y)} \]

- **4 updates** with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- **Soft max**
Conventional Bayes Rule

\[P(M_i | y) = \frac{P(M_i)P(y | M_i)}{P(y)} \]

- **4 updates** with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- **Soft max**
Conventional Bayes Rule

\[P(M_i|y) = \frac{P(M_i)P(y|M_i)}{P(y)} \]

- 4 updates with the same data likelihood
- Update maintains uncertainty information about maximum likelihood
- Soft max
Conventional Bayes Rule

\[P(M_i|y) = \frac{P(M_i)P(y|M_i)}{P(y)} \]

- **4 updates** with the same data likelihood
- **Update maintains uncertainty information about maximum likelihood**
- **Soft max**
Bayes Rule for density matrices

\[D(M|y) = \frac{\exp (\log D(M) + \log D(y|M))}{\text{tr (above matrix)}} \]

- **1 update with data likelyhood matrix** \(D(y|M) \)
- **Update maintains uncertainty information about maximum eigenvalue**
- **Soft max eigenvalue calculation**
Bayes Rule for density matrices

\[D(M|y) = \frac{\exp \left(\log D(M) + \log D(y|M) \right)}{\text{tr} \ (\text{above matrix})} \]

- 2 updates with same data likelihood matrix \(D(y|M) \)
- Update maintains uncertainty information about maximum eigenvalue
- **Soft max eigenvalue calculation**
Bayes Rule for density matrices

\[
D(M|y) = \frac{\exp \left(\log D(M) + \log D(y|M) \right)}{\text{tr} \ (\text{above matrix})}
\]

- 3 updates with same data likelihood matrix \(D(y|M) \)
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation
Bayes Rule for density matrices

\[D(M|y) = \exp \left(\log D(M) + \log D(y|M) \right) / \text{tr (above matrix)} \]

- 4 updates with same data likelihood matrix \(D(y|M) \)
- Update maintains uncertainty information about maximum eigenvalue
- **Soft max eigenvalue calculation**
Bayes Rule for density matrices

\[D(M|y) = \exp\left(\log D(M) + \log D(y|M)\right) \]

\[\text{tr (above matrix)} \]

- 10 updates with same data likelihood matrix \(D(y|M) \)
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation
Bayes Rule for density matrices

\[D(M|y) = \frac{\exp \left(\log D(M) + \log D(y|M) \right)}{\text{tr (above matrix)}} \]

- 20 updates with same data likelihood matrix \(D(y|M) \)
- Update maintains uncertainty information about maximum eigenvalue
- Soft max eigenvalue calculation
Bayes’ rules

<table>
<thead>
<tr>
<th>Bayes rule</th>
<th>Vector equation</th>
<th>Matrix equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(M_i</td>
<td>y) = \frac{P(M_i) \cdot P(y</td>
<td>M_i)}{\sum_j P(M_j) \cdot P(y</td>
</tr>
</tbody>
</table>

$\bullet \circ \mathbf{B} := \exp(\log \mathbf{A} + \log \mathbf{B})$
Bayes’ rules

<table>
<thead>
<tr>
<th></th>
<th>Vector</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayes rule</td>
<td>(P(M_i</td>
<td>y) = \frac{P(M_i) \cdot P(y</td>
</tr>
<tr>
<td>Regularizer</td>
<td>Entropy</td>
<td>Quantum Entropy</td>
</tr>
</tbody>
</table>

\(\odot \) denotes the matrix product and \(\oplus \) denotes the quantum product.

Entropy and **Quantum Entropy** are defined as:

\[H(X) = -\sum_x p(x) \log p(x) \]

\[S(X) = -\sum_x p(x) S(x) \]

where \(S(x) \) is the entropy of the state \(x \).
Vectors as diagonal matrices

All matrices same eigensystem

Fancy \odot becomes \cdot

Often the hardest problem
ie bounds for the vector case “lift” to the matrix case
Vector case as special case of matrix case

- Vectors as diagonal matrices
- All matrices same eigensystem
- Fancy ⊙ becomes ·

- Often the hardest problem
 ie bounds for the vector case “lift” to the matrix case
- This phenomenon has been dubbed the “free matrix lunch”

Size of matrix = size of vector = n
PCA setup

Data vectors $\mathbf{c} = \sum_n \mathbf{x}_n \mathbf{x}_n^\top$

\[
\max_{\text{unit } \mathbf{u}} \quad \mathbf{u}^\top \mathbf{c} \mathbf{u} \quad \text{not convex in } \mathbf{u}
\]

\[
\max_{\text{dyad } \mathbf{u} \mathbf{u}^\top} \quad \text{tr}(\mathbf{c} \mathbf{u} \mathbf{u}^\top)
\]

Corresponding vector problem

\[
\max_{\mathbf{e}_i} \quad \mathbf{c}^\top \mathbf{e}_i \quad \text{linear in } \mathbf{e}_i
\]

Vector problem is matrix problem when everything happens in the same eigensystem

Uncertainty over unit: probability vector
Uncertainty over dyads: density matrix
Uncertainty over k-sets of units: capped probability vector
Uncertainty over rank k projection matrices: capped density matrix
For PCA

- Solve the vector problem first
- Do all bounds
- Lift to matrix case: essentially replace \cdot by \odot
- Regret bounds stay the same
- Free Matrix Lunch
Questions

- When can you “lift” vector case to matrix case?
- When is there a free matrix lunch?
- Lifting matrices to tensors?
- Efficient algorithms for large matrices?
 - Approximations of ⊙
 - Avoid eigenvalue decomposition by sampling
 - ...