A Bayesian Framework for Estimating Properties of Network Diffusions

Varun Embar1 \quad Rama Kumar Pasumarthi2 \\
Indrajit Bhattacharya1

1IBM Research India \\
2American Express (work done when at IBM)

ACM SIGKDD 2014
Network Diffusion

Example 1: Spread of Ebola in West Africa
Example 2: Spread of hashtags among Twitter users

Entities of interest

- **Network**: Captures connections between people / Twitter users
- **Diffusion Process**: Stochastic mechanism of ‘infection’ spread
- **Diffusion Cascades**: Time-stamped infection paths over network

Long studied in epidemiology, sociology, econometrics, marketing
Recent interest in computer science
Problems in Network Diffusion Analysis

Evaluating Properties of Observed Network and Cascades

- Centrality and reach of individual nodes
- Viral marketing seeds (Kempe KDD03, Goyal CIKM08, PVLDB11)
- Community structures (Mehmood ECML13, Barbieri ICDM13)
- Likelier diffusion mechanism (Milling SIGMetrix12)

Inferring Network from Partially-observed Cascades

- Estimate network connections and strengths given cascades
- Primarily assuming independent cascade diffusion model
- Maximum likelihood estimation
- Saito (AML09), Gomez-Rodriguez (KDD10, ICML11,13, WSDM13), Du (NIPS12), Netrapalli (SIGMetrix12), Wang (ECML12), Kutzkov (KDD13), Daneshmand (ICML14)
Example Property: Leaders of tribes (LoT)

Leader of Tribes *(Goyal CIKM08)*

- Network property: High-weight paths to large ‘tribe’ of nodes
- Cascade property: Frequent transmissions over these paths

Not tractable even given complete observations

Weak LoT

- Network property: High-weight edges to tribe nodes
- Cascade property: Frequent transmissions over these edges

Easy to compute given complete observations
Still interesting for marketing, epidemiology
Evaluating Joint Properties: Challenges

Network and Diffusion Cascade

- $\alpha_{uv} \in \mathbb{R}_+$: connection strength between nodes u, v
- Cascade of infections: infected node u_i, parent node z_i, time t_i

Diffusion Process: Independent Cascade Model (ICM)

- Infected node proposes infection time for uninfected neighbors
- Uninfected node catches infection with earliest proposed time
- Multiple infections of same node (Splitting model) (Wang ECML12)

Hidden variables

- Network: Connection strengths and sometimes edges unobserved
- Cascades: Cascades do not record infection sources z_i
Expectations of Network Diffusion Properties

Network Diffusion Property

Function \(f(\alpha, z) \) defined on network \(\alpha \) and cascade \(z \)

Frequentist Plug-in

Evaluate property using point estimates (MLE) of \(\alpha \) and \(z \)

- MLE overfits for infrequent edges
- Most likely property may not correspond to mostly likely \(\alpha \) and \(z \)

Expectation of Network Diffusion Properties

\[
\bar{f}(z, \alpha) = E_{p(z,\alpha|\{c^o\})}[f(z, \alpha)]
\]
Conjugate prior for Network Strengths

- IID Gamma prior over network strengths α

 $$p(\alpha) = \prod_{uv} p(\alpha_{uv}) ; \quad p(\alpha_{uv}) = Gamma(\alpha_{uv}; a, b)$$

- Gamma conjugate for Rayleigh and Exponential delays in ICM

- Posterior also Gamma distributed

 $$p(\alpha|\{c^0\}, z) = \prod_{uv} Gamma(a + \rho_{uv}(z), b + \Delta_{uv})$$

 $\rho_{uv}(z)$: #u-v infections; Δ_{uv}: Cumulative u-v infection delay

Parameter settings for sparse network or non-informative prior
Expectation Computation

- Integration over network α; $p(\alpha | \{c^o\}, z)$ decomposes over α_{uv}
- Summation over parents z; $p(z | \{c^o\}, \alpha)$ decomposes over z_i

Characterization of properties (for Independent Cascade Model)

- **Network-nice**: When property decomposes over α_{uv} and z, and α_{uv} terms are Gamma integrable, network integration is $O(|E|)$
- **Cascade-nice**: When the property decomposes over z_i, cascade path summation is $O(|C|)$
- **Totally-nice**: When the property is such that α_{uv} and z_i terms are decoupled in the expectation, and α_{uv} terms are Gamma integrable, joint marginalization is $O(|E| + |C|)$
Interesting Network Diffusion Properties

Network-centric Properties: Scores for nodes, edges, etc
- Nodes with large path-reach (approx. LoT): not nice at all
- Nodes with large edge-reach (weak LoT): network-nice only
- Strong frequent edges: network-nice only
- Network Inference: network-nice, cascade-nice, not totally nice
- Edges that are strong or frequent but not both: totally nice

Cascade-centric Properties: Scores for individual infections, infection paths, etc
- Infections by strongest neighbor: cascade-nice only
- Infection parent inference: cascade-nice only
- Complete likelihood, Likelihood: cascade-nice only
Approximate Evaluation of Not-nice Properties

MCMC Marginalization
- Only network-nice: Efficiently marginalize α, MCMC over z
- Only cascade-nice: Efficiently marginalize z, MCMC over α
- Not nice: MCMC over both α and z

Gibbs Sampling for Network Diffusion

Full / Uncollapsed Gibbs Sampling

\[
p(z_i = j|z_{-i}, \alpha, \{c^o\}) \propto \alpha_{ji}
\]
\[
p(\alpha_{uv}|z, \alpha_{-uv}, \{c^o\}) \sim Gamma(\rho_{uv} + a, \Delta_{uv} + b)
\]

Collapsed Gibbs sampling for network-nice properties

\[
p(z_i = j|z_{-i}, \{c^o\}) \propto \frac{(\rho_{uv}^i(z)+a)}{\Delta_{uv}+b}
\]
Experiments: Algorithms

Bayesian Expectation (BE)

Gamma prior parameters: $a = 0.00001$, $b = 0.1$

Frequentist Plug-in (FP)

- Take point estimate $\hat{\alpha}$ of network
- Most likely infection parents given $\hat{\alpha}$: $\hat{z} = \arg \max_z p(z|\hat{\alpha}, \{c^0\})$
- Evaluate $f(\hat{\alpha}, \hat{z})$
- For $\hat{\alpha}$, use MONET

Exponential distribution for all experiments
Synthetic Data Experiments

Data Generation
- Forest Fire, Random, Hierarchical, Core-Periphery
- 1000 nodes, \sim 2000 edges
- $\alpha_{uv} \sim U(0.01, 10)$
- 20 splitting cascades with 2 random seeds, \sim 50,000 infections

Evaluation
- Parent inference: accuracy against true parent z^*
- Network inference: Error wrt best possible given true parents (α^*)
- Property: Error wrt $f(\alpha^*, z^*)$
Bayesian approach recovers the signature shape of the distribution, by considering less likely networks.
Synthetic Data Experiments: One-to-one Properties

Loglikelihood

<table>
<thead>
<tr>
<th></th>
<th>CorePeriphery</th>
<th>Hierarchical</th>
<th>Random</th>
<th>ForestFire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BE, FP</td>
<td>BE, FP</td>
<td>BE, FP</td>
<td>BE, FP</td>
</tr>
<tr>
<td>Test</td>
<td>1.0e4, 0.6e4</td>
<td>6.5e3, 2.4e3</td>
<td>1.1e4, -1.5e4</td>
<td>1.2e4, 926</td>
</tr>
<tr>
<td>Train</td>
<td>2.8e4, 3.6e4</td>
<td>2.0e4, 2.2e4</td>
<td>2.3e4, 2.9e4</td>
<td>2.8e4, 3.3e4</td>
</tr>
</tbody>
</table>

Network and Parent Inference

<table>
<thead>
<tr>
<th></th>
<th>CorePeriphery</th>
<th>Hierarchical</th>
<th>Random</th>
<th>ForestFire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Network Inf</td>
<td>0.116</td>
<td>0.884</td>
<td>0.147</td>
<td>0.329</td>
</tr>
<tr>
<td>Parent Inf</td>
<td>0.533</td>
<td>0.861</td>
<td>0.757</td>
<td>0.770</td>
</tr>
</tbody>
</table>

Bayesian approach avoids overfitting for one-to-one properties
Real Data Experiments

Meme-Tracker

- Meme diffusion between 5000 blogs, news sites (Mar 11 - Feb 12)
- 5 topics: Basketball, Alcohol, Technology, NBA, Occupy
- Long cascades: length > 30
- 80-20 train-test split; infections of new users pruned in test

Test Loglikelihood

<table>
<thead>
<tr>
<th></th>
<th>Bball</th>
<th>Alcohol</th>
<th>Tech</th>
<th>NBA</th>
<th>Occupy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>-1.5e6</td>
<td>-5.8e5</td>
<td>-6.6e5</td>
<td>-8.9e5</td>
<td>-5.1e5</td>
</tr>
<tr>
<td>FP</td>
<td>-3.5e6</td>
<td>-8.9e5</td>
<td>-2.6e6</td>
<td>-1.1e7</td>
<td>-1.2e6</td>
</tr>
</tbody>
</table>

Bayesian approach generalizes much better
Scaling Experiments

- Map reduce implementation; 12 core server
- Randomly sampled cascades from Meme-Tracker

Scaling (roughly) linear in no. of cores
Closing Thoughts

Summary of this paper

- Evaluating network diffusion properties from partial observations
- Bayesian framework: Expected property under posterior distribution of hidden network and infection parents
- Characterization of properties in terms of computation cost
- Significantly better reconstruction than frequentist baseline

Future directions

- Optimize for specific properties
- Consider more sophisticated random graph priors
- Analyze alternative diffusion models, e.g. linear threshold