Probabilistic Latent Network Visualization: Inferring and Embedding Diffusion Networks

Takeshi Kurashima, Tomoharu Iwata, Noriko Takaya, and Hiroshi Sawada

NTT Corporation, Japan
Introduction

- The diffusion of information, rumors, and diseases are assumed to be probabilistic processes over networks.
- Understanding the mechanism (the network structure) that causes the diffusion helps to predict future events in a few days.
Hidden Network Structure

- Observation recorded only when a node mentions information, makes a decision, or becomes infected.

unobserved

observed

an event

a cascade

time
Hidden Network Structure

- Observation recorded only when a node mentions information, makes a decision, or becomes infected.

Inferring diffusion networks based on cascade data
Proposed Model

- **Key-feature**: Inferring the diffusion network by embedding it into a low-dimensional Euclidean space.
- Our model learns the latent coordinates of nodes that best explain the observed cascade data.

Each node n has latent coordinates x_n in the D-dimensional latent space:

$$x_n = (x_{n1}, \ldots, x_{nD})$$

Diffusion is more likely to occur between nodes that are placed close together:

- e.g.) an outbreak of influenza
 -> geographical closeness between people

D-dimensional Euclidean space
Advantage 1: Network Visualization

- *Influence preserving principle:* each node attempts to place its influential nodes relatively closer than non-influential ones.

From the initial sight of the layout, we can identify *communities* wherein the nodes strongly influence each other.
Advantage 2: Network Inference

- High accuracy **even when many cascades remain hidden**
 - e.g. the diffusion process of new or rare information and disease
- The number of parameters to be estimated is small

<table>
<thead>
<tr>
<th>Existing model</th>
<th>Proposed model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N \times N >> D \times N$</td>
<td>N: number of nodes</td>
</tr>
<tr>
<td></td>
<td>D: dimensionality of the latent space</td>
</tr>
</tbody>
</table>

- The short distance between two nodes in the latent space implies the presence of influence-relation

Cascades (input)

Node coordinates in the latent space (output)
Preliminary: Survival Analysis

- **The transmission function**: The likelihood of an event happening to i at time t_i given that the same event has already happened to j at time t_j

 \[
f(t_i | t_j) = f(\Delta_{ji})
 \]
 \[
 \Delta_{ji} = t_i - t_j
 \]

- **The survival function**: The probability that i is NOT infected by j before time t_i

 \[
 S(t_i | t_j) = \int_{t_i}^{\infty} f(t) \, dt.
 \]

- **The hazard function**: The rate that i becomes infected by j after time t_i

 \[
 h(t_i | t_j) = \frac{f(t_i | t_j)}{S(t_i | t_j)}
 \]
Proposed Model

The transmission function

\[f(\Delta_{ji}|x_i, x_j) = \mu \alpha(x_i, x_j)(\Delta_{ji})^{\mu-1} \exp\left(-\alpha(x_i, x_j)(\Delta_{ji})^{\mu}\right) \]

The transmission rate: how likely node \(j \) is to infect node \(i \)

\[\alpha(x_i, x_j) = \exp\left(-\frac{\beta}{2}\|x_j - x_i\|^2\right) \]

The Euclidean distance in the D-dimensional latent space

e.g. D=3
Likelihood

• MAP (maximum a posteriori) estimation
 – The unknown parameters \rightarrow node coordinates

\[X = \{x_n\}_{n=1}^N, \text{ where } x_n = (x_{n1}, \ldots, x_{nD}) \]

• The negative log likelihood of parameters X for the given cascades, C, with prior is as follows:

\[
L(X|C) = \sum_i \sum_j \sum_{\{c: t_j^c < t_i^c\}} \exp \left(-\frac{\beta}{2} \|x_j - x_i\|^2\right) (\Delta_{ji}^c)^\mu \\
- \sum_i \sum_{\{c: t_i^c \leq T^c\}} \log \sum_{\{j: t_j^c \leq t_i^c\}} \mu \exp \left(-\frac{\beta}{2} \|x_j - x_i\|^2\right) (\Delta_{ji}^c)^{\mu-1} \\
- \sum_i \log \left(\left(\frac{\gamma}{2\pi}\right)^{D/2} \exp \left(-\frac{\gamma}{2} \|x_n\|^2\right)\right),
\]

Using a Gaussian prior with zero mean and spherical covariance for x_n.
Inference

• The negative log likelihood can be minimized through the use of the gradient-based numerical optimization method

\[
\frac{\partial L}{\partial x_n} = \sum_j \sum_{\{c \mid t^c_n \neq t^c_j\}} \beta (x_j - x_n) \exp \left(-\frac{\beta}{2} \|x_j - x_n\|^2 \right) \left(\Delta_{jn}^c \right)^\mu \\
- \sum_{\{c \mid t_n^c \leq T^c\}} \sum_{\{j \mid t_j^c < t_n^c\}} \beta (x_j - x_n) P(n|j) \\
- \sum_j \sum_{\{c \mid t_j^c \leq T^c\}} \beta (x_j - x_n) P(j|n) + \gamma x_n,
\]

The conditional probability of infection from node j to node n
Experiments: Data

• The information diffusion occurring in Web
 – When a news article or blog used a keyword
 – MemeTracker dataset of [Rodriguez et al., WSDM’13]

• Eight types of cascade data
 – “iPhone”, “Jobs”, “Baseball”, “Basketball”
 “Earthquake”, “Fukushima”, “Sept.11”, “Syria”
Exp.1: Visualization Performance

- The visualization space learned from training data could predict the influence-relation in the test data
 - The influence-relation between nodes is true if test data has an event wherein both are infected

Evaluation metric: **F-measure**

The precision for node n: the fraction of nodes that are contained in $B_n(r_n)$ that have influence-relation to node n

The recall for node n: the fraction of nodes that have influence-relations that are successfully contained in $B_n(r_n)$
Baseline Method

• 2-step process

1. Inferring the diffusion network using NETRATE [ICML’11]
2. Embedding it into 2-, and 3-dimensional visualization space using MDS, Isomap, or KK-spring method
Exp.1: Visualization Performance

PLNV satisfies the influence-preserving-principle in the visualization space.

2-dimensional

3-dimensional
Comparisons of 2- and 3-dimensional Visualization

PLNV avoids the node collapse problem, and exhibits several densely-populated areas (communities)
Exp.2: Network Inference Performance

PLNV is appropriate for solving the network inference problem with sparse cascade data (# cascades < 300)

RED: NETRATE (baseline)
OTHERS: PLNV (proposed)

$D = 2, 3, 5, \text{ and } 10$
Conclusion

• We propose a probabilistic model for inferring & visualizing diffusion networks
 – Suggests the network layout that satisfies the influence-preserving principle
 – Accurately infers the diffusion network when the number of cascades is relatively small

• Future work
 – Other types of cascade data (e.g. infectious disease)
 – Topic dependent diffusion