Heat Kernel Based Community Detection

Joint with
David F. Gleich,
(Purdue), supported by
NSF CAREER
1149756-CCF

Kyle Kloster
Purdue University
Local Community Detection

Given seed(s) S in G, find a community that contains S.

“Community”?

seed
Local Community Detection

Given seed(s) S in G, find a community that contains S.

“Community”?

high internal, low external connectivity
Low conductance sets are communities

\[
\text{conductance}(T) = \frac{\text{# edges leaving } T}{\text{# edge endpoints in } T}
\]

= "chance a random step exits \(T \)"
Low conductance sets are communities

\[\text{conductance}(T) = \frac{\# \text{ edges leaving } T}{\# \text{ edge endpoints in } T} \]

= “chance a random step exits \(T \)”

\[\text{conductance}(\text{comm}) = \frac{39}{381} = 0.102 \]

How to find these?
Graph diffusions find low conductance sets

A diffusion propagates “rank” from a seed across a graph.

- Green nodes = high diffusion value
- Blue nodes = low diffusion value

seed
Graph diffusions find low-conductance sets
A diffusion propagates “rank” from a seed across a graph.

Okay… how does this work?
Graph Diffusion

A diffusion models how a mass (green dye, money, popularity) spreads from a seed across a network.
Graph Diffusion

A diffusion models how a mass (green dye, money, popularity) spreads from a seed across a network.
Graph Diffusion

A diffusion models how a mass (green dye, money, popularity) spreads from a seed across a network.

Once mass reaches a node, it propagates to the neighbors, with some decay.

“decay”: dye dilutes, money is taxed, popularity fades
Graph Diffusion

A diffusion models how a mass (green dye, money, popularity) spreads from a seed across a network.

Once mass reaches a node, it propagates to the neighbors, with some decay.

“decay”: dye dilutes, money is taxed, popularity fades
Graph Diffusion

A diffusion models how a mass (green dye, money, popularity) spreads from a seed across a network.

Once mass reaches a node, it propagates to the neighbors, with some decay.

“decay”: dye dilutes, money is taxed, popularity fades
“diffusion score” of a node = weighted sum of the mass at that node during different stages.

\[c_0 p_0 + c_1 p_1 + c_2 p_2 + c_3 p_3 + \ldots \]
Diffusion score

“diffusion score” of a node = weighted sum of the mass at that node during different stages.

diffusion score vector = f

$$f = \sum_{k=0}^{\infty} c_k P^k s$$

- P = random-walk transition matrix
- s = normalized seed vector
- c_k = weight on stage k
Heat Kernel vs. PageRank
Diffusions

Heat Kernel uses $t^k/k!$

Our work is new analysis for this diffusion.

PageRank uses α^k at stage k.

Standard, widely-used diffusion we use for comparison.
Heat Kernel vs. PageRank Behavior

HK emphasizes earlier stages of diffusion.

\Rightarrow involve shorter walks from seed,

\Rightarrow so HK looks at smaller sets than PR

$\alpha = 0.9\xi$

$\alpha = 0.8\xi$

\Pr, α^k

$\text{HK, } t^k/k!$
<table>
<thead>
<tr>
<th></th>
<th>Heat Kernel (HK)</th>
<th>PageRank (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>good conductance</td>
<td></td>
<td>Local Cheeger Inequality:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“PR finds set of near-optimal conductance”</td>
</tr>
<tr>
<td>fast algorithm</td>
<td></td>
<td>“PPR-push” is $O\left(\frac{1}{\varepsilon(1-\alpha)}\right)$ in theory, fast in practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Andersen Chung Lang 06]</td>
</tr>
</tbody>
</table>
Heat Kernel vs. PageRank Theory

<table>
<thead>
<tr>
<th></th>
<th>good conductance</th>
<th>fast algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>Local Cheeger Inequality: "PR finds set of near-optimal conductance"</td>
<td>“PPR-push” is $O(1/(\varepsilon(1-\alpha)))$ in theory, fast in practice [Andersen Chung Lang 06]</td>
</tr>
<tr>
<td>HK</td>
<td>Local Cheeger Inequality [Chung 07]</td>
<td></td>
</tr>
</tbody>
</table>
Heat Kernel vs. PageRank Theory

<table>
<thead>
<tr>
<th>good conductance</th>
<th>fast algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>“PPR-push” is $O\left(\frac{1}{\varepsilon(1-\alpha)}\right)$</td>
</tr>
<tr>
<td>HK</td>
<td>in theory, fast in practice</td>
</tr>
<tr>
<td></td>
<td>[Andersen Chung Lang 06]</td>
</tr>
</tbody>
</table>

Local Cheeger Inequality:

- PR: “PR finds set of near-optimal conductance”
- HK: [Chung 07]

Our work
Our work on **Heat Kernel**: theory

THEOREM Our algorithm for a relative ε-accuracy in a degree-weighted norm has runtime $\leq O\left(e^t(\log(1/\varepsilon) + \log(t)) / \varepsilon \right)$

(which is constant, regardless of graph size)
Our work on **Heat Kernel**: theory

THEOREM Our algorithm for a relative ϵ-accuracy in a degree-weighted norm has

$$\text{runtime} \leq O\left(e^t\left(\log\left(\frac{1}{\epsilon}\right) + \log(t)\right) / \epsilon \right)$$

(which is constant, regardless of graph size)

COROLLARY **HK** is local!

(O(1) runtime \rightarrow diffusion vector has O(1) entries)
Our work on Heat Kernel: results

First efficient, deterministic HK algorithm. Deterministic is important to be able to compare the behaviors of HK and PR experimentally:

Our key findings

• HK more accurately describes ground-truth communities in real-world networks
• identifies smaller sets → better precision
• speed & conductance comparable with PR
Python demo

un-optimized Python code on a laptop

Twitter graph
41.6 M nodes
2.4 B edges

Available for download:

https://gist.github.com/dgleich/cf170a226aa848240cf4
Algorithm Outline

Computing HK

1. Pre-compute “push” thresholds
2. Do “push” on all entries above threshold
Algorithm Intuition

Computing HK given parameters t, ε, seed s

Starting from here…

How to end up here?
Algorithm Intuition

Begin with mass at seed(s) in a “residual” staging area, \(r_0 \)

The residuals \(r_k \) hold mass that is unprocessed – it’s like error

\[
\frac{t^0}{0!} p_0 + \frac{t^1}{1!} p_1 + \frac{t^2}{2!} p_2 + \frac{t^3}{3!} p_3 + \ldots
\]
Push Operation

push – (1) remove entry in r_k, (2) put in p,

\[
\begin{align*}
\frac{t^0}{0!} p_0 + \frac{t^1}{1!} p_1 + \frac{t^2}{2!} p_2 + \frac{t^3}{3!} p_3 + \ldots
\end{align*}
\]
Push Operation

push – (1) remove entry in r_k,
(2) put in p,
(3) then scale and spread to neighbors in next r
Push Operation

push – (1) remove entry in r_k,
(2) put in p,
(3) then scale and spread to
neighbors
in next r
(repeat)
Push Operation

push – (1) remove entry in r_k,
 (2) put in p,
 (3) then scale and spread to
 neighbors in next r
(repeat)
Push Operation

push – (1) remove entry in \(r_k \),
(2) put in \(p \),
(3) then scale and spread to
neighbors
in next \(r \)
(repeat)
Thresholds

ERROR equals weighted sum of entries left in r_k

→ Set threshold so “leftovers” sum to $< \varepsilon$
Thresholds

ERROR equals weighted sum of entries left in r_k

→ Set threshold so “leftovers” sum to $< \varepsilon$

Threshold for stage r_k is

\[
\frac{t^0}{0!} p_0 + \frac{t^1}{1!} p_1 + \frac{t^2}{2!} p_2 + \frac{t^3}{3!} p_3 + \ldots
\]
Algorithm Outline

Computing HK

1. Pre-compute "push" thresholds
2. Do "push" on all entries above threshold
Communities in Real-world Networks

Given a seed in an unidentified real-world community, how well can **HK** and **PR** describe that community? Measure quality using F_1-measure.

| Graph | $|V|$ | $|E|$ |
|---------|-------|-------|
| amazon | 330 K | 930 K |
| dblp | 320 K | 1 M |
| youtube | 1.1 M | 3 M |
| lj | 4 M | 35 M |
| orkut | 3.1 M | 120 M |
| friendster | 66 M | 1.8 B |

F_1-measure is the harmonic mean of precision and recall:

\[
\text{precision} = \frac{\# \text{ correct guesses}}{\# \text{ total guesses}}
\]

\[
\text{recall} = \frac{\# \text{ answers you get}}{\# \text{ answers there are}}
\]

Datasets from SNAP collection [Leskovec]
<table>
<thead>
<tr>
<th>data</th>
<th>F_1 HK</th>
<th>F_1 PR</th>
<th>precision HK</th>
<th>precision PR</th>
<th>set size HK</th>
<th>set size PR</th>
<th>comm size</th>
</tr>
</thead>
<tbody>
<tr>
<td>amazon</td>
<td>0.325</td>
<td>0.140</td>
<td>0.244</td>
<td>0.107</td>
<td>193</td>
<td>15293</td>
<td>495</td>
</tr>
</tbody>
</table>
PR achieves high recall by “guessing” a huge set

HK identifies a tighter cluster, so attains better precision

<table>
<thead>
<tr>
<th>data</th>
<th>F_1</th>
<th>precision HK</th>
<th>precision PR</th>
<th>set size HK</th>
<th>set size PR</th>
<th>comm size</th>
</tr>
</thead>
<tbody>
<tr>
<td>amazon</td>
<td>0.325</td>
<td>0.244</td>
<td>0.107</td>
<td>193</td>
<td>15293</td>
<td>495</td>
</tr>
<tr>
<td>dblp</td>
<td>0.257</td>
<td>0.208</td>
<td>0.081</td>
<td>44</td>
<td>16026</td>
<td>1429</td>
</tr>
<tr>
<td>youtube</td>
<td>0.177</td>
<td>0.135</td>
<td>0.098</td>
<td>1010</td>
<td>6079</td>
<td>1615</td>
</tr>
<tr>
<td>lj</td>
<td>0.131</td>
<td>0.102</td>
<td>0.086</td>
<td>283</td>
<td>738</td>
<td>662</td>
</tr>
<tr>
<td>orkut</td>
<td>0.055</td>
<td>0.036</td>
<td>0.031</td>
<td>537</td>
<td>1989</td>
<td>4526</td>
</tr>
<tr>
<td>friendster</td>
<td>0.078</td>
<td>0.066</td>
<td>0.075</td>
<td>229</td>
<td>333</td>
<td>724</td>
</tr>
</tbody>
</table>
Runtime & Conductance

HK is comparable in runtime and conductance.

As graphs scale, the diffusions’ performance becomes even more similar.
Code, references, future work

Code available at

http://www.cs.purdue.edu/homes/dgleich/codes/hkgrow

Ongoing work

- generalizing to other diffusions
- simultaneously compute multiple diffusions

Questions or suggestions? Email Kyle Kloster at kkloste-at-purdue-dot-edu