Event detection in activity networks

Polina Rozenshtein1
Aris Anagnostopoulos2
Aristides Gionis1
Nikolaj Tatti1

1HIIT, Aalto University \cdot 2Sapienza University of Rome

August 25, 2014
City events

- **City event**: macroscopic-level activity in the city, which takes place in space and time, and falls outside the normal city life cycle
 - social event, festival, traffic accident, weather disaster, ..
City events

15.11.2012: Normal day, no events

11.09.2012: National day of Catalonia; FC Barcelona - Igualada HC
Event detection problem formulation

- Locations \(V = \{v_1, \ldots, v_n\} \)
- Location \(v_i \) has coordinates \((x_i, y_i)\)
- Distance \(d(u, v) \) between location \(u \) and \(v \)
- Activity at location \(v_i \) recorded in time series \(t_i \)

- For fixed time snapshot:
 - Weight \(w(v) \): deviation from normal activity at location \(v \)
 - Estimated using a predictive model
 - Sophisticated models can be incorporated
Event detection problem formulation

- **Input:** graph $G = (V, E, d, w)$
 - Distance function $d : E \rightarrow R$
 - Weight function $w : V \rightarrow R$

- **Find** subset of locations $S \subseteq V$ with
 - High activity weight $W(S) = \sum_{v \in S} w(v)$
 - Compactness $D(S)$

- **Compactness** $D(S)$:
 1. All pair distances $D_{AP}(S) = \frac{1}{2} \sum_{u \in S} \sum_{v \in S} d(u, v)$
 2. Minimal spanning tree $D_T(S) = \min_T \sum_{(u, v) \in T} d(u, v)$

- **Maximize** $Q(S) = \lambda W(S) - D(S)$
Shifted objective

- Maximize $Q(S) = \lambda W(S) - D(S)$ is \textbf{NP}-hard
- Ensure non-negativity by adding a constant term

Shifted objective: all pairs

- Maximize $Q_{AP}(S) = \lambda W(S) - D_{AP}(S)$
- Maximize $Q_{AP}(S) = \lambda W(S) - D_{AP}(S) + D_{AP}(V)$

Shifted objective: spanning tree

- Maximize $Q_T(S) = \lambda W(S) - D_T(S)$
- Minimize $Q_T(S) = D_T(S) + \lambda W(V \setminus S)$
- Prize-Collecting Steiner Tree
Algorithms: all pair distances

\[\frac{1}{2} \text{ – approximations} \]

- Function \(Q_{AP}(S) \) is **sub-modular** (but not monotone)
- **Trivial**: all or nothing
 - \(S = \arg \max \{ Q_{AP}(\emptyset), Q_{AP}(V) \} \)
Algorithms: all pair distances

$\frac{1}{2}$ – approximations

- Function $Q_{AP}(S)$ is sub-modular (but not monotone)
- Trivial: all or nothing
 - $S = \arg \max \{Q_{AP}(\emptyset), Q_{AP}(V)\}$
- Greedy algorithm
 - start with the empty set
 - iteratively add the best vertex until no improvement
Algorithms: all pair distances

$1/2$ – approximations

- Function $Q_{AP}(S)$ is **sub-modular** (but not monotone)
- **Trivial**: all or nothing
 - $S = \arg \max \{ Q_{AP}(\emptyset), Q_{AP}(V) \}$
- **Greedy** algorithm
 - start with the **empty set**
 - iteratively **add** the **best vertex** until no improvement
- **Double-greedy** algorithm by Buchbinder et al.[1] (BFNS)
 - Maintain two sets $X = \emptyset$ and $Y = V$
 - For each $v \in V$:
 - If $Q_{AP}(X \cup v) - Q_{AP}(X) > Q_{AP}(Y \setminus v) - Q_{AP}(Y)$,
 then add v to X
 - otherwise, delete v from Y
 - At the end $X = Y$, return X
Algorithms: all pair distances

- Algorithm based on SDP relaxations
 - Seminal work of Goemans and Williamson [3]
 - 0.878-approximation for MaxCut

- Possible to adapt the technique for our problem
- 0.878-approximation for (s, t)-MaxCut
Algorithms: Prize-Collecting Steiner Tree (PCST)

- Primal-dual algorithm
 - $2 - \frac{1}{n-1}$ – approximation (Goemans and Williamson [2])
Algorithms: Prize-Collecting Steiner Tree (PCST)

- **Primal-dual algorithm**
 - $2 - \frac{1}{n-1}$ – approximation (Goemans and Williamson [2])

- **Two-phase algorithm**
 - 2 – approximation by Johnson et al.[4]
 - 1. **Merging phase:**
 - Start with each vertex as a component
 - Merge components based on weights and edge distances
 - 2. **Bottom-up pruning phase**
Algorithms: Prize-Collecting Steiner Tree (PCST)

- **Primal-dual algorithm**
 - $2 - \frac{1}{n-1}$ – approximation (Goemans and Williamson [2])

- **Two-phase algorithm**
 - 2 – approximation by Johnson et al.[4]
 1. **Merging phase:**
 - Start with each vertex as a component
 - Merge components based on weights and edge distances
 2. **Bottom-up pruning phase**

- **Same simple greedy as with all pairs distance**
 - start with the empty set
 - iteratively add the best vertex at that step
 - repeat until there is no improvement
Experimental evaluation

- **Synthetic datasets**
 - Planted events + noise
- **Bicing datasets** (sensor networks)
 - Activity = number of bikes
 - Barcelona, Minneapolis, and Washington DC
- **Location-based social networks**
 - Geo-tagged tweets
 - Activity = number of tweets in city locations
 - 100 cities in US
 - Experiments with NY and LA
Typical behavior: algorithms for All Pairs model

<table>
<thead>
<tr>
<th>All pairs</th>
<th>Trivial</th>
<th>Greedy</th>
<th>Double Greedy (BFNS)</th>
<th>SDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.878</td>
</tr>
</tbody>
</table>

![Graph showing cost vs. weight multiplier for different algorithms.](image-url)
Typical behavior: algorithms for Tree model

<table>
<thead>
<tr>
<th>PCST</th>
<th>Primal Dual</th>
<th>Simple Greedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>no</td>
</tr>
</tbody>
</table>

![Graph showing cost vs. weight multiplier for GreedyT and PD algorithms.](image-url)
Some of the top event days detected

Barcelona: 18.09.12 festival of the Poblenou neighborhood
Barcelona: 01.06.12 Primavera sound music festival
Barcelona: 31.10.12 Halloween
New York: 6.09.10 Labor Day
Los Angeles: 31.05.10 Memorial Day
Washington, DC: 27.05.13 Memorial Day
Summary and future work

- Detecting events in activity networks
- Find high-activity compact subareas in the city
- Developed approximation algorithms and baselines
- Experimented with urban and social media datasets

- Scalability
 - Incorporate time dimension in the framework and discover events of varying temporal support
- Event evolution and tracking
References

Thank you!