Grouping Students in Educational Settings

Rakesh Agrawal
rakesha@microsoft.com

Behzad Golshan
Behzad@cs.bu.edu

Evimaria Terzi
evimaria@cs.bu.edu
Introduction

- Consider a class of students
 - Different ability levels (single scores)
 - Example: GRE, TOEFL, SAT, ...

How to form study groups?
Introduction

- Classical methods
 - Ability-Based Grouping
 - Grouping students with similar abilities together
 - Pseudo-Random Grouping
 - Grouping students based on some arbitrary ordering
 - Alphabetically, FCFS, ...
Introduction

- Classical methods
 - Ability-Based Grouping
 - Grouping students with similar abilities together
 - Pseudo-Random Grouping
 - Grouping students based on some arbitrary ordering
 - Alphabetically, FCFS, ...

Which method to use?
Inconclusive verdict from empirical studies
(Kulik 92, Loveless 13, McPartland 87)
Let’s take a computational approach
Our Results

- Grouping strong students with not much weaker students
Our Results

- Grouping strong students with not much weaker students
Our Results

- Similar structure with different distributions of abilities

![Graphs showing Normal Distribution, Uniform Distribution, and Pareto Distribution.](image)
Our Results

- Classical methods are not optimal
 - With respect to our objective
Framework

- Set of n students with abilities $\theta_1, \theta_2, \ldots, \theta_n$
 - Ability scores are real number ($\theta_i \in R$)

- Collective Ability of a team T
 - Represents the group ability
 - Expected Ability
 - Choose a random student and ask him

$$\hat{\Theta}_T = \frac{1}{|T|} \sum_{i \in T} \theta_i$$
Framework

- Two groups of students in a study group
 - Students below the collective ability
 - Students above the collective ability
Framework

- Two groups of students in a study group
 - Students below the collective ability
 - Students above the collective ability

- Followers (F_T)
 - Mostly learn from other members of the group

- Leaders (L_T)
 - Mostly improve by teaching others
Framework

- Two groups of students in a study group
 - Students below the collective ability
 - Students above the collective ability

Followers \((F_T)\)
- Mostly learn from other members of the group

Leaders \((L_T)\)
- Mostly improve by teaching others

Our Focus
- Maximize the number of such students
Problem

- Partitioning students into study groups
 - Partition students into l groups of size k to maximize the gain
 - Gain = sum of the number of followers in each group

Theorem:
- NP-hard to solve
- PARTITION problem reduces this problem
Algorithm

- Partitioning students into study groups
 - Partition students into l groups of size k to maximize the gain

- Algorithm:
 - Find the best team of size k from the pool of students
 - Remove the team from the pool
 - Repeat until all groups are formed
Algorithm

- **Partitioning students into study groups**
 - Partition students into l groups of size k to maximize the gain

- **Algorithm:**
 - **Find the best team** of size k from the pool of students
 - Remove the team from the pool
 - Repeat until all groups are formed

- **Best Team**
 - Team with the maximum gain (i.e., number of followers)
 - How to find the best team?
Finding the Best Team

Observation 1

Pick the best students
Observation 2

The followers are consecutive
Finding the Best Team

Algorithm

- How many leaders?
 - Try all values of x (i.e., number of leaders)
- Who are the followers?
 - Try moving the sliding window
Finding the Best Team

Algorithm

- How many leaders?
 - Try all values of x (i.e., number of leaders)
- Who are the followers?
 - Try moving the sliding window
- Satisfying condition?

- Test $O(n \log(k))$ groupings
Experiments (Count-\(lG\))

- Different distribution of student abilities
Alternative Formulations

- General Framework

\[A(T) = \sum_{i \in F_T} A_f(i, T) + \sum_{i \in L_T} A_\ell(i, T) \]

- Other Gain functions
 - How much do followers learn?
 - See the paper for more details

Gain Function
Gain (leader)
Gain (follower)
Summary

- Traditional methods are not optimal
- Different objectives leads to different team structures
- Computation approaches can reveal such optimal structures

Future Work

- Richer gain functions
 - Gain for the leaders
 - Non-linear gain functions
- Incorporating constraints due to socio-emotional factors
- Evaluating our method in real-life settings
Thanks

KDD 2014
Thanks
Single Group

Observation 2

Strongest follower is weaker than collective team ability

\[\hat{\Theta}_T = \left(\sum_{i \in L} \theta_i + \sum_{i \in F} \theta_i \right) / k > \max_{i \in F} \theta_i \]

Or

\[\sum_{i \in F} \theta_i > k \times \max_{i \in F} \theta_i - \sum_{i \in L} \theta_i \]

1) Maximize this

2) Pick students weaker than \(\max_{i \in F} \theta_i \)

Feasibility Condition
Framework

- Two groups of students
 - Different benefits from participating

\[
A(T) = \sum_{i \in F_T} A_f(i, T) + \sum_{i \in L_T} A_\ell(i, T)
\]

Gain Function ➔ Gain (follower) ➔ Gain (leader)
Framework

- Two groups of students
 - Different benefits from participating

\[A(T) = \sum_{i \in F_T} A_f(i, T) + \sum_{i \in L_T} A_\ell(i, T) \]

- Gain Function
- Gain (leader)
- Gain (follower)

- Our focus: Gain for the followers