Online Learning with Composite Loss Functions

Ofer Dekel (MSR) Jian Ding (UChicago)
Tomer Koren (Technion) Yuval Peres (MSR)

Conference on Learning Theory
Barcelona, June 2014
Oblivious Multiarmed Bandit

Player plays a repeated game against an *oblivious adversary*. Players action set is the set of *arms*: \([k] = \{1, \ldots, k \} \).

- adversary defines loss functions \(f_1, \ldots, f_T \), where \(f_t : [k] \mapsto [0, 1] \)
- for \(t = 1, \ldots, T \)
 1. player (randomly) chooses an arm \(X_t \in [k] \)
 2. player incurs loss \(f_t(X_t) \)
 3. *bandit feedback*: player observes \(f_t(X_t) \)
Measuring the Difficulty of the Game

Define: The player’s regret

\[R(T) = \mathbb{E} \left[\sum_{t=1}^{T} f_t(X_t) \right] - \min_{x \in [k]} \sum_{t=1}^{T} f_t(x) . \]

Define: The game’s minimax regret

\[\mathcal{R}(T) = \inf_{\text{player}} \sup_{\text{adversary}} R(T) . \]

Theorem (ACFS02, AB09) \[\mathcal{R}(T) = \Theta(\sqrt{T}) . \]

We say that “oblivious multiarmed bandit is an easy problem”
1-Memory Multiarmed Bandit

Player plays a repeated game against a 1-memory adversary. Players action set is the set of arms: $[k] = \{1, \ldots, k\}$.

- adversary defines loss functions f_1, \ldots, f_T, where $f_t : [k] \times [k] \mapsto [0, 1]$
- for $t = 1, \ldots, T$
 1. player (randomly) chooses an arm $X_t \in [k]$
 2. player incurs loss $f_t(X_{t-1}, X_t)$
 3. bandit feedback: player observes $f_t(X_{t-1}, X_t)$
Measuring the Difficulty of the Game

Define: The player’s regret

\[R(T) = \mathbb{E} \left[\sum_{t=1}^{T} f_t(X_{t-1}, X_t) \right] - \min_{x \in [k]} \sum_{t=1}^{T} f_t(x, x). \]

Define: The game’s minimax regret

\[\mathcal{R}(T) = \inf_{\text{player}} \sup_{\text{adversary}} R(T). \]

Theorem (DDKP14)

\[\mathcal{R}(T) = \widetilde{\Theta}(T^{2/3}) . \]

“1-memory multiarmed bandit is hard, but still learnable”
Assume $k = 2$. Define the loss of arm 1:

- Draw ξ_1, \ldots, ξ_T i.i.d. Gaussians
- Recursively define: $W_0 = \frac{1}{2}$ and $W_t = W_{\rho(t)} + \xi_t$, with $\rho(t) = t - \gcd(t, 2^T)$

Define the loss of arm 2 to be either ϵ greater or ϵ less.
Analysis: Bandits and Switching

The result: l_1, \ldots, l_T ($l_t \in [0, 1]^2$) such that

- Each pull of suboptimal arm adds ϵ to the regret
- Player has to switch $\frac{1}{\epsilon^2}$ times to identify better arm

Theorem (DDKP14) Bandit with switching costs,

\[f_t(X_{t-1}, X_t) = l_t(X_t) + \mathbb{1}_{X_t \neq X_{t-1}} \text{, has } \mathcal{R}(T) = \widetilde{\Theta}(T^{2/3}) \]
Composite Loss Functions

Assume the adversary defines loss functions as follows

- adversary chooses oblivious functions ℓ_1, \ldots, ℓ_T (namely, $\ell_t : [k] \mapsto [0, 1]$)
- adversary applies a known loss combining function $g : [0, 1] \times [0, 1] \mapsto [0, 1]$ to define

$$f_t(X_{t-1}, X_t) = g\left(\ell_{t-1}(X_{t-1}), \ell_t(X_t)\right)$$

- Feedback: player may even observe $\ell_t(X_t)$

Examples

$g(a, b) = \min(a, b), \quad g(a, b) = \max(a, b)$
Theorem

- $g(a, b)$ is linear $\Rightarrow \mathcal{R}(T) = \Theta(\sqrt{T})$ (easy)
- $g(a, b) = \min(a, b)$ $\Rightarrow \mathcal{R}(T) = \tilde{\Theta}(T^{2/3})$ (hard)
- $g(a, b) = \max(a, b)$ $\Rightarrow \mathcal{R}(T) = \tilde{\Theta}(T^{2/3})$ (hard)
Analysis: Spiking the Loss

Randomly add pairs of spikes to simulate a switching cost
- They are too small to be detected by the player
- Each switch adds $\tilde{\Theta}(1)$ to the regret
- When no-switch, spikes have negligible effect

![Graph showing $\ell_{t,1}$ and $\ell_{t,2}$]
More details at our poster.