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Introduction

Metric Learning

Important problem in machine learning

Metric governs success or failure of learning algorithm
Exploit distance information intrinsically available
Useful in many domains

Several existing approaches

SDP approach [Xing et al.]
Large-margin nearest neighbor (LMNN) [Weinberger et al.]
Collapsing Classes (MCML) [Globerson and Roweis]
Online Metric Learning (POLA) [Shalev-Shwartz et al.]
Many others!

Brian Kulis University of Texas at Austin Information-theoretic Metric Learning



Our Approach

Contributions

Simple and scalable
Incorporates a variety of constraints
Online learning variant with regret bounds
Allows kernelization for learning a kernel function

Existing methods fail to satisfy all the above
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Mahalanobis Distances

Like many others, we consider learning Mahalanobis distances

Distance parameterized by p.d. d × d matrix A:

dA(x, y) = (x − y)TA(x − y)

Often A is inverse of the covariance matrix
Generalizes squared Euclidean distance (A = I )
Rotates and scales input data
Standard for metric learning
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Problem Formulation

Introduce constraints—Examples:

Assume pairwise similarity and dissimilarity constraints

dA(xi , xj) ≤ u if (i , j) ∈ S [similarity constraints]

dA(xi , xj) ≥ ℓ if (i , j) ∈ D [dissimilarity constraints]

Other linear constraints on A possible

Goal:

Learn a metric dA which is “close” to some starting metric dA0

dA satisfies additional prespecified constraints
Need notion of distance between metrics
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The Gaussian Connection

Exploit connection to Gaussian distributions:

N (x|µ, A) =
1

Z
exp

(

−
1

2
dA(x, µ)

)

Bijection between set of Mahalanobis distances and set of Gaussians
with fixed µ

Compare Gaussians using relative entropy

dA(x, y) dA0(x, y)
l l

N (x|µ, A) ↔ N (x|µ, A0)
↑

Differential Relative Entropy
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The Optimization Problem

min
A

∫

N (x|µ, A0) log

(

N (x|µ, A0)

N (x|µ, A)

)

dx

subject to dA(xi , xj), ≤ u, (i , j) ∈ S

dA(xi , xj) ≥ ℓ, (i , j) ∈ D

A º 0

Utilize connection between KL-divergence and the LogDet divergence
(assume µ fixed)

∫

N (x|µ, A0) log

(

N (x|µ, A0)

N (x|µ, A)

)

dx =
1

2
Dℓd(A, A0)

Dℓd(A, A0) = trace(AA−1
0 ) − log det(AA−1

0 ) − d
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The Optimization Problem

KL Formulation LogDet Formulation

minA

∫

N (x|µ, A0) log N (x|µ,A0)
N (x|µ,A) dx Dℓd(A, A0)

s.t. dA(xi , xj) ≤ u ⇔ tr(A(xi − xj)(xi − xj)
T ) ≤ u

dA(xi , xj) ≥ ℓ tr(A(xi − xj)(xi − xj)
T ) ≥ ℓ

A º 0 A º 0

Utilize connection between KL-divergence and the LogDet divergence
(assume µ fixed)

∫

N (x|µ, A0) log

(

N (x|µ, A0)

N (x|µ, A)

)

dx =
1

2
Dℓd(A, A0)

Dℓd(A, A0) = trace(AA−1
0 ) − log det(AA−1

0 ) − d
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Bregman’s Method

Use the “Bregman” projection of y onto affine set H,

PH(y) = argmin
a∈H

Dϕ(a, y)

y

a

Method projects onto each constrain and applies correction

Dual Coordinate Ascent

A has rank-one update (no eigenvector calculation):

At+1 = At + βtAt(xi − xj)(xi − xj)
TAt
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Bregman’s Method

Use the “Bregman” projection of y onto affine set H,

PH(y) = argmin
a∈H

Dϕ(a, y)

y

a

Advantages:

Scalable
Automatic enforcement of positive semidefiniteness
Simple, closed-form projections
No eigenvector calculation
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Connection to Kernel Learning

LogDet Formulation (1) Kernel Formulation (2)
minA Dℓd(A, A0) minK Dℓd(K , K0)

s.t. tr(A(xi − xj)(xi − xj)
T ) ≤ u s.t. tr(K (ei − ej)(ei − ej)

T ) ≤ u

tr(A(xi − xj)(xi − xj)
T ) ≥ ℓ tr(K (ei − ej)(ei − ej)

T ) ≥ ℓ

A º 0 K º 0

(1) opt. w.r.t. the Mahalanobis matrix, (2) w.r.t. the kernel matrix

Let K0 = XTA0X , where X is the input data

Let A∗ be the opt. solution to (1) and K ∗ be the opt. solution to (2)

Theorem: K ∗ = XTA∗X
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Kernelization

Metric learning in kernel space

Assume input kernel function κ(x, y) = ϕ(x)Tϕ(y)
Want to learn

dA(ϕ(x), ϕ(y)) = (ϕ(x) − ϕ(y))TA(ϕ(x) − ϕ(y))

Equivalently: learn a new kernel function of the form

κ̃(x, y) = ϕ(x)TAϕ(y)

How to learn this only using κ(x, y)?

Learned kernel can be shown to be of the form

κ̃(x, y) = κ(x, y) +
∑

i

∑

j

σijκ(x, xi )κ(y, xj)

Can update σij parameters while optimizing the kernel formulation
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Online Metric Learning

Setup

Want to learn metric in online setting

Every timestep t, receive pair of points (xt , yt)

Predict distance between xt and yt , then receive “true” distance

Record loss at step t, update At to At+1

Goal: minimize total loss

Regret Bounds

LOML: total loss of online metric learning algorithm

LA∗ : total loss of best offline algorithm

LOML ≤ r1LA∗ + r2Dℓd(A∗, I )

r1, r2 functions of the learning rate of the algorithm
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Experimental Results

Framework

k-nearest neighbor (k = 4)

ℓ and u determined by 5th and 95th percentile of distribution

20c2 constraints, chosen randomly

2-fold cross validation

Binomial confidence intervals at the 95% level

Algorithms

Information-theoretic Metric Learning (offline and online)

Large-Margin Nearest Neighbors (LMNN) [Weinberger et al.]

Metric Learning by Collapsing Classes (MCML) [Globerson and Roweis]

Baseline Metrics: Euclidean and Inverse Covariance
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UCI Data Sets

Ran ITML with A0 = I

(ITML-MaxEnt) and the
inverse covariance
(InverseCovariance)

Ran online algorithm for 105

iterations

Wine Ionosphere Scale Iris Soybean
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ITML-MaxEnt is the best performing algorithm (within the 95%
confidence intervals) across all data sets
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Clarify Data Sets

Classification for
nearest-neighbor software
support

Clarify monitors predefined
program features

Each program run is one data
point

Very high dimensionality

Feature selection reduces the
number of features to 20 Latex Mpg321 Foxpro Iptables
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ITML-MaxEnt is the best performing algorithm (within the 95%
confidence intervals) across all data sets
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Conclusions

Formulation

Minimizes the relative entropy between 2 Gaussians

Connection to LogDet divergence

Many different constraints may be enforced

Algorithm

Applies Bregman projections—rank-one updates

Can be kernelized

Online variant has provable regret bounds

Empirical Evaluation

Method is competitive with existing techniques

Scalable to large data sets

Application to nearest-neighbor software support
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