DISSECTING SOCIAL MEDIA
AND ITS IMPACT ON FINANCIAL MARKETS

Machine Learning & Natural Language Processing at Bloomberg

James Hodson, R&D Knowledge Engineering
A BSV alert is triggered by an unusually high number of social media postings on a company.

1) INTEL CORP

<table>
<thead>
<tr>
<th>Actual</th>
<th>Expected</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>2.2</td>
<td>Sep 13 09:00-09:30</td>
</tr>
</tbody>
</table>

Number of Postings (30-Minute Increments)

- Alert
- Posts
- Expected
- INTC Equity 23.44

Representative Postings

11) david peltier: Analysts' Actions: $AET $FINL $INTC $TEVA $UA thestreet.com/s... TWT 09/13
12) BenzingaWire: $INTC PreMarket Info Recap for September 13: Friday the 13th E... TWT 09/13
13) Earnings Impact: $INTC Check out the details about $300 Bay Trail clam shell... STK 09/13
14) Almostatrader: Watching: $NQ $SWY $INTC $GSVC... also names from earlier in... STK 09/13
15) John Voorheis: Upgrades $WEN $D $INTC $VZ $LUL $SWY $MGM Downgrades $UA... TWT 09/13
16) Charles Rankin: #stocks MARKET PULSE-Facebook, Intel, Pactera, Ulta Beauty,... TWT 09/13
We currently have a large position in APPLE. We believe the company to be extremely undervalued. Spoke to Tim Cook today. More to come.
Bloomberg

Goal
Use Data and Knowledge about the real world in order to infer patterns and make predictions. Leverage this ability to enhance the tools our clients need.

- Sentiment Analysis
- Novelty Detection
- Market Impact Analysis
- Topic-based Clustering
- Social Velocity
- Language Detection
- Event Detection & Extraction
- Machine Translation
- Social Graph Analysis
- Tokenization
- User Behaviour Analysis
- Parsing

James Hodson, R&D Knowledge Engineering
“James loves Machine Learning when the objective is well-specified.”
Mark the boundaries of tokens and sentences. Maximize the probability of each segment.

[“James loves Machine Learning when the objective is well-specified.”]
Identify the grammatical categorization of each token:

[James loves Machine Learning when the objective is well-specified.]
Noun groupings and named-entity recognition provides identification of logically connected entities. Named-entity resolution ties those entities to an ontology (knowledge-base) to differentiate them:

[James loves Machine Learning when the objective is well-specified.]

The ontology may also be used to resolve definitions of ambiguous words:

Verb, Present Indicative: to hold dear: CHERISH

James Hodson, R&D Knowledge Engineering
Build the dependency relationship diagram between constituents of the sentence:

[James loves Machine Learning when the objective is well-specified.]
What are the roles of different constituents in the sentence?

[Bloomberg]

[James loves Machine Learning when the objective is well-specified.]

James Hodson, R&D Knowledge Engineering
If we get this far, we can make our findings portable:

\[\exists x \in X, \exists y \in Y : \text{hasObjective}(x,y) \land \text{wellSpecified}(y) \land \text{loves}(\text{James},x) \]

[James loves Machine Learning when the objective is well-specified.]

James Hodson, R&D Knowledge Engineering
What are the roles of different constituents in the sentence?

This is great if your content conforms to some core standards:

- Accepted grammatical constructs;
- Contextually consistent;
- Orthographic norms;
- Referentially consistent;
- Not “Kardashian Noise”;

[James loves Machine Learning when the objective is well-specified.]

James Hodson, R&D Knowledge Engineering
Bloomberg

Social Publishing
A new kind of content

Shared conversations: Stocktwits, Twitter, Facebook, Bit.ly, LinkedIn, more...

James Hodson, R&D Knowledge Engineering
Social Publishing
A new kind of content

James Hodson, R&D Knowledge Engineering
Bloomberg

Social Publishing
A new kind of content

Different Grammatical Constructs

Opinion Leaders
Different Grammatical Constructs
Inconsistent Entity References
Opinion Leaders

James Hodson, R&D Knowledge Engineering
Different Grammatical Constructs
Inconsistent Entity References
Contextually Ambiguous

Bloomberg

Social Publishing
A new kind of content

James Hodson, R&D Knowledge Engineering
Bloomberg

Opinion Leaders

Social Publishing
A new kind of content

Different Grammatical Constructs
Inconsistent Entity References
Contextually Ambiguous
Orthographically Challenging

James Hodson, R&D Knowledge Engineering
Different Grammatical Constructs
Inconsistent Entity References
Contextually Ambiguous
Orthographically Challenging
Frequency Spelling Inconsistencies

Social Publishing
A new kind of content

James Hodson, R&D Knowledge Engineering
In order to answer the same questions as we answer for editorial content, we must first address several new questions:

- **How trustworthy is this message?**
 - AP News Twitter account hacked: “Breaking: Two Explosions in the White House and Barack Obama is injured”
 - The false alarm sent the Dow plunging 145 points;

- **How authoritative is the source?**
 - Do people listen to what is being published?
 - Is it timely, novel, impactful?

- **What is the social context for this message?**
 - What has already been said?
 - Is this a response?
 - How many people are listening?
 - Is it spreading?
What does the content from this source usually look like?

- Normalize the input text to reduce dimensionality:

 - [Geeky, yet, brilliant], [!], [@modified@, @conversation@, A, card, game, based, on, lexicalized, tree-adjoining, grammar, @url@, @conversation@], [@topic@], [@topics@, grammar], [@topics@, SLPeeeps];

- Build a semi-lexicalized, feature-rich channel-based language model (LM);

- Estimate the likelihood that new content published is genuinely from this channel, by using a modified Query Likelihood Model:
 - \[P(tweet|channel) = \sum_{k=0}^{n} \log(P(K|Q)) \]

 Where \(k \) represents the semi-lexicalized feature, \(K \) the set of n-gram features rooted at \(k \), and \(Q \) the semi-lexicalized channel LM.

James Hodson, R&D Knowledge Engineering
What does the content from this source usually look like?

- People tend to maintain a consistent set of styles across conversations.
 - Threshold of around 0.5 seems to separate genuine user content from spam behaviors;

MT: “ModifiedTweet”
@Frequent
#Consistency
N-gram Overlap in LM

James Hodson, R&D Knowledge Engineering
Is this genuine user content?

- Auto-generated template-spam from market activity;

James Hodson, R&D Knowledge Engineering
Are the assertions corroborated?

- The message syntax can provide us with clues;
 - Re-tweets imply agreement, propagation;
 - Citations from trusted sources (news);
- Have we seen this information before?
 - Simple n-gram overlap measures tend to perform poorly:

 ![Twitter screenshot 1]

 ![Twitter screenshot 2]

- Need to move beyond n-grams to entity recognition and propositional structure;

James Hodson, R&D Knowledge Engineering
Are the assertions corroborated?

- Dependency Parse of phrasal portions;
 - “UN Confirms” – X – “used”

- Super-sense mapping;
 - “sarın” >> WordNet.Noun.Substance
 - “chemical” >> WordNet.Noun.Substance

- FrameNet *Attack* frame;

James Hodson, R&D Knowledge Engineering
Do people listen to what is being published?

- Number of “followers”, “re-tweets”, alone don’t provide the full picture;
- Sources tend to be authoritative within a limited set of domains;
 - Don’t allow this to make everything they say important;

- We would like a topic-based score of a source’s authority:
 - First we need topics (LSI, LDA):
 - Or use #tags as proxy…
Do people listen to what is being published?

- Take Obama as an example;
- 6 months of posts give the following (roughly scaled by probability of each topic):

 - health-care
 - power
 - minimum-wage
 - energy
 - jobs
 - americans
 - discussion
 - business
 - insurance
 - pregnancy
 - marriage
 - debt
 - fuel-efficiency
 - shutdown
 - default
 - affordable
 - immigration
 - economy
 - environment
 - innovation
 - ohio
 - discrimination
 - against
 - mental-health
 - representatives
 - wind
 - bat-kid
 - steel
 - manufacturing
 - minimum-wage
 - carbon
 - pollution
 - innovation
 - fuel-efficiency
 - ohio
 - discrimination
 - representatives
 - wind
 - bat-kid
 - steel
 - manufacturing
 - minimum-wage
 - carbon
 - pollution
 - innovation
 - fuel-efficiency
 - ohio
 - discrimination
 - representatives
Do people listen to what is being published?

- Next, associate each source to their most prolific topics;
- \[\arg\max_{\{t_1,...,t_n\}} [\prod_{d \in D} (\sum_{t \in \{t_1,...,t_n\}} P(d|t))] ; \]

Obama

James Hodson, R&D Knowledge Engineering
Do people listen to what is being published?

- For each topic, and each document representative of that topic for the source in question, we want to understand the relationship between prolific topics and their audience:
 - Build a document feature vector based on followers and re-tweets at the time of publication, trends of related #topics, URL’s, etc.
 - Use a PageRank-like algorithm:
 - Treat each user-topic as a node;
 - Each message is treated as an edge to the set of peers who interact with it directly or indirectly;
 - Relationship strength decays with distance and time;
Do people listen to what is being published?

- For Obama, the graph of topics vs. interaction profile—surprising result for healthcare, but potentially explained by temporal bias?
What is the social context for this message?

- Track conversations through the network;
- Analyze the strength of a topic by how quickly it emerges/grows/disappears;
- Identify when new important information is being released;
 - High authority score;
 - Unseen statement;
- Predict impact (information propagation through social graph);
- Predict sentiment (positive, negative, neutral)
- Verify impact (market reaction);

James Hodson, R&D Knowledge Engineering
Social Publishing
What is the impact?

James Hodson, R&D Knowledge Engineering
Questions:

jhodson2@bloomberg.net