Cost-Sensitive Classification: Algorithms and Advances

Hsuan-Tien Lin
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University

Tutorial for ACML @ Canberra, Australia
November 13, 2013
More about Me

- co-leader of KDDCup world champion teams at NTU: 2010–2013
- research on multi-label classification, ranking, active learning, etc.
- research on cost-sensitive classification: 2007–Present
- Secretary General, Taiwanese Association for Artificial Intelligence
- instructor of Mandarin-teaching MOOC of Machine Learning on NTU-Coursera: 2013.11–
 https://www.coursera.org/course/ntumlone
Outline

Cost-Sensitive Binary Classification

Bayesian Perspective of Cost-Sensitive Binary Classification
Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Cost-Sensitive Multiclass Classification
Bayesian Perspective of Cost-Sensitive Multiclass Classification

Cost-Sensitive Classification by Reweighting and Relabeling
Cost-Sensitive Classification by Binary Classification
Cost-Sensitive Classification by Regression

Cost-and-Error-Sensitive Classification with Bioinformatics Application
Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Is This Your Fingerprint?

- a **binary classification** problem
 —grouping “fingerprint pictures” into **two** different “categories”

C’mon, we know about binary classification all too well! :-)

Hsuan-Tien Lin (NTU CSIE)

Cost-Sensitive Classification: Algorithms and Advances
Supervised Machine Learning

(parent) -> (picture, category) pairs

truth $f(x) + \text{noise } e(x)$

effects x_n, category y_n

(kid's brain) -> good decision function

possibilities

learning algorithm -> good decision function $g(x) \approx f(x)$

learning model $\{h(x)\}$

how to evaluate whether $g(x) \approx f(x)$?
Performance Evaluation

Fingerprint Verification

Example/figure borrowed from Amazon ML best-seller textbook

"Learning from Data" (Abu-Mostafa, Magdon-Ismail, 2013)

Two types of error: **false accept** and **false reject**

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1 0</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1 1</td>
</tr>
</tbody>
</table>

Simplest choice: penalizes both types **equally** and calculate **average** penalties
Fingerprint Verification for Supermarket

Fingerprint Verification

two types of error: **false accept** and **false reject**

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **false accept**: give a minor discount, intruder left fingerprint :-(
- **false reject**: very unhappy customer, lose future business

- supermarket: fingerprint for discount
Fingerprint Verification for CIA

two types of error: **false accept** and **false reject**

<table>
<thead>
<tr>
<th></th>
<th>+1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>no error</td>
<td>false reject</td>
</tr>
<tr>
<td>-1</td>
<td>false accept</td>
<td>no error</td>
</tr>
</tbody>
</table>

- CIA: fingerprint for entrance
- **false accept**: very serious consequences!
- **false reject**: unhappy employee, but so what? :-)

\[f \quad \rightarrow \quad \begin{cases} +1 & \text{you} \\ -1 & \text{intruder} \end{cases} \]
Cost-Sensitive Binary Classification

Regular Binary Classification

penalizes both types equally

<table>
<thead>
<tr>
<th></th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

in-sample error for any hypothesis h

$$E_{in}(h) = \frac{1}{N} \sum \left[y_n \neq h(x_n) \right]$$

out-of-sample error for any hypothesis h

$$E_{out}(h) = \mathcal{E} \sum \left[y \neq h(x) \right]$$

regular binary classification:
well-studied in machine learning
—ya, we know! :-)

Hsuan-Tien Lin (NTU CSIE)
Supermarket Cost (Error, Loss, ...) Matrix

<table>
<thead>
<tr>
<th></th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+1$</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

in-sample

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} \left\{ \begin{array}{ll} 10 & \text{if } y_n = +1 \\ 1 & \text{if } y_n = -1 \end{array} \right\} \cdot \mathbb{I}[y_n \neq h(x_n)]$$

out-of-sample

$$E_{out}(h) = \frac{\mathcal{E}}{(x,y)} \left\{ \begin{array}{ll} 10 & \text{if } y = +1 \\ 1 & \text{if } y = -1 \end{array} \right\} \cdot \mathbb{I}[y \neq h(x)]$$

class-weighted cost-sensitive binary classification: different ‘weight’ for different y
Setup: Class-Weighted Cost-Sensitive Binary Classification

Given

- \(N \) examples, each \((input \, x_n, \, label \, y_n) \in \mathcal{X} \times \{-1, +1\}\)
- and weights \(w_+ \), \(w_- \)
- representing the two entries of the cost matrix

\[
\begin{array}{c|cc}
\text{y} & +1 & -1 \\
\hline
h(x) & 0 & w_+ \\
-1 & w_- & 0 \\
\end{array}
\]

Goal

- a classifier \(g(x) \) that pays a small cost \(w_y \) \([y \neq g(x)]\)
- on future **unseen** example \((x, y)\), i.e., achieves low \(E_{out}(g) \)

regular classification: \(w_+ = w_- \) (= 1)
Fingerprint Verification

two types of error: false accept and false reject

- supermarket: fingerprint for discount
- big customer: really don’t want to lose her/his business
- usual customer: don’t want to lose business, but not so serious
Example-Weighted Cost-Sensitive Binary Classification

Supermarket Cost Vectors (Rows)

<table>
<thead>
<tr>
<th></th>
<th>+1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>big</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>usual</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>intruder</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

in-sample

\[
E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} w_n \cdot [y_n \neq h(x_n)]
\]

out-of-sample

\[
E_{out}(h) = \mathcal{E}_{(x,y,w)} w \cdot [y \neq h(x)]
\]

element-weighted cost-sensitive binary classification: different \(w\) for different \((x, y)\)
—seen this in AdaBoost? :-)
Setup: Example-Weighted Cost-Sensitive Binary Classification

Given

\(N \) examples, each \((input \ x_n, label \ y_n) \in \mathcal{X} \times \{-1, +1\}\) and weight \(w_n \in \mathbb{R}^+\)

Goal

a classifier \(g(x)\) that

\[
pays \quad \text{a small cost} \quad w\|y \neq g(x)\|
\]

on future **unseen** example \((x, y, w)\), i.e., achieves low \(E_{out}(g)\)

regular \(\subset\) class-weighted \(\subset\) example-weighted
Outline

Cost-Sensitive Binary Classification

Bayesian Perspective of Cost-Sensitive Binary Classification

Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Cost-Sensitive Multiclass Classification

Bayesian Perspective of Cost-Sensitive Multiclass Classification

Cost-Sensitive Classification by Reweighting and Relabeling

Cost-Sensitive Classification by Binary Classification

Cost-Sensitive Classification by Regression

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Key Idea: Conditional Probability Estimator

Goal (Class-Weighted Setup)

A classifier \(g(x) \) that pays a small cost \(w_y \) \([y \neq g(x)]\) on future \textbf{unseen} example \((x, y)\)

- expected error for predicting +1 on \(x \): \(w_+ P(+1|x) \)
- expected error for predicting -1 on \(x \): \(w_- P(-1|x) \)

If \(P(y|x) \) known

Bayes optimal \(g^*(x) = \)

\[
\text{sign}\left(w_+ P(+1|x) - w_- P(-1|x)\right)
\]

If \(p(x) \approx P(+1|x) \) well

approximately good \(g_p(x) = \)

\[
\text{sign}\left(w_+ p(x) - w_- (1 - p(x))\right)
\]

How to get conditional probability estimator \(p \)?

\textbf{logistic regression, Naïve Bayes, …}
if $p(x) \approx P(+1|x)$ well

approximately good $g_p(x) = \text{sign} \left(w_+ p(x) - w_- (1 - p(x)) \right)$

that is (Elkan, 2001),

$g_p(x) = +1 \text{ iff } w_+ p(x) - w_- (1 - p(x)) > 0$

iff $p(x) > \frac{w_-}{w_+ + w_-} : \frac{1}{11}$ for supermarket; $\frac{100}{101}$ for CIA

Approximate Bayes-Optimal Decision (ABOD) Approach

1. use your favorite algorithm on $\{(x_n, y_n)\}$ to get $p(x) \approx P(+1|x)$
2. for each new input x, predict its class using $g_p(x) = \text{sign}(p(x) - \frac{w_-}{w_+ + w_-})$

‘simplest’ approach:
probability estimate + threshold changing
1. use your favorite algorithm on \(\{(x_n, y_n)\} \) to get \(p(x) \approx P(+1|x) \)

2. for each new input \(x \), predict its class using

\[
g_p(x) = \text{sign}(p(x) - \frac{w_-}{w_+ + w_-})
\]

LogReg \rightarrow g

<table>
<thead>
<tr>
<th>y</th>
<th>+1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

regular supermarket
Pros and Cons of ABOD

Pros

- **optimal**: if good probability estimate: $p(x)$ really close to $P(+1|x)$
- **simple**: training (probability estimate) unchanged, and prediction (threshold) changed only a little

Cons

- ‘difficult’: good probability estimate often more difficult than good binary classification
- ‘restricted’: only applicable to class-weighted setup —need ‘full picture’ of cost matrix

approach for the example-weighted setup?
Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Outline

Cost-Sensitive Binary Classification

Bayesian Perspective of Cost-Sensitive Binary Classification

Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Cost-Sensitive Multiclass Classification

Bayesian Perspective of Cost-Sensitive Multiclass Classification

Cost-Sensitive Classification by Reweighting and Relabeling

Cost-Sensitive Classification by Binary Classification

Cost-Sensitive Classification by Regression

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Key Idea: Example Weight = Copying

Goal

A classifier $g(x)$ that pays a small cost $w \mathbb{1}[y \neq g(x)]$

On future \textbf{unseen} example (x, y, w)

On one (x, y)

Wrong prediction charged by w

On w copies of (x, y)

Wrong prediction charged by 1 —regular classification

How to copy? \textbf{over-sampling}
Example-Weighted Classification by Over-Sampling

copy each \((x_n, y_n)\) **for** \(w_n\) **times**

<table>
<thead>
<tr>
<th>(y)</th>
<th>big</th>
<th>usual</th>
<th>intruder</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x))</td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>big</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>usual</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>intruder</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\((x_1, -1, 1)\)
\((x_2, +1, 10)\)
\((x_3, +1, 100)\)
\((x_4, +1, 10)\)
\((x_5, -1, 1)\)

equivalent problem

<table>
<thead>
<tr>
<th>(y)</th>
<th>big</th>
<th>usual</th>
<th>intruder</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x))</td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>big</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>usual</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>intruder</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\((x_1, -1)\)
\((x_2, +1), \ldots, (x_2, +1)\)
\((x_3, +1), \ldots, (x_3, +1), \ldots, (x_3, +1)\)
\((x_4, +1), \ldots, (x_4, +1)\)
\((x_5, -1)\)

how to learn a good \(g\) for RHS?

SVM, NNet, \ldots
Cost-Proportionate Example Weighting

Cost-Proportionate Example Weighting (CPEW) Approach

1. Effectively transform \(\{(x_n, y_n, w_n)\} \) to \(\{(x_m, y_m)\} \) such that the 'copies' of \((x_n, y_n)\) in \(\{(x_m, y_m)\} \) is proportional to \(w_n\)
 - over/under-sampling with normalized \(w_n\) (Elkan, 2001)
 - under-sampling by rejection (Zadrozny, 2003)
 - modify existing algorithms equivalently (Zadrozny, 2003)

2. Use your favorite algorithm on \(\{(x_m, y_m)\} \) to get binary classifier \(g(x)\)

3. For each new input \(x\), predict its class using \(g(x)\)

Simple and general:
very popular for cost-sensitive binary classification
CPEW by Modification

1. effectively transform \(\{(x_n, y_n, w_n)\} \) to \(\{(x_m, y_m)\} \) such that the ‘copies’ of \((x_n, y_n) \) in \(\{(x_m, y_m)\} \) is proportional to \(w_n \)
 - modify existing algorithms equivalently (Zadrozny, 2003)

2. use your favorite algorithm on \(\{(x_m, y_m)\} \) to get binary classifier \(g(x) \)

3. for each new input \(x \), predict its class using \(g(x) \)

Regular Linear SVM

\[
\min_{w, b} \quad \frac{1}{2} \langle w, w \rangle + \sum_{n=1}^{N} C \xi_n \\
\xi_n = \max (1 - y_n(\langle w, x_n \rangle + b), 0)
\]

Modified Linear SVM

\[
\min_{w, b} \quad \frac{1}{2} \langle w, w \rangle + \sum_{n=1}^{N} C \cdot w_n \cdot \xi_n \\
\xi_n = \max (1 - y_n(\langle w, x_n \rangle + b), 0)
\]
1. Effectively transform \(\{(x_n, y_n, w_n)\} \) to \(\{(x_m, y_m)\} \) by modifying existing algorithms equivalently (Zadrozny, 2003).
2. Use your favorite algorithm on \(\{(x_m, y_m)\} \) to get \(g(x) \).
3. For each new input \(x \), predict its class using \(g(x) \).
Non-Bayesian Perspective of Cost-Sensitive Binary Classification

CPEW by Rejection Sampling

COSTING Algorithm (Zadrozny, 2003)

1. Effectively transform \(\{(x_n, y_n, w_n)\} \) to \(\{(x_m, y_m)\} \) such that the ‘copies’ of \((x_n, y_n)\) in \(\{(x_m, y_m)\} \) is proportional to \(w_n \)
 - under-sampling by rejection (Zadrozny, 2003)

2. Use your favorite algorithm on \(\{(x_m, y_m)\} \) to get binary classifier \(g(x) \)

3. Repeat 1 and 2 to get multiple \(g \) and aggregate them

4. For each new input \(x \), predict its class using aggregated \(g(x) \)

Commonly used when your favorite algorithm is a black box rather than a white box
Biased Personal Favorites

- CPEW by Modification if possible
- COSTING: fast training and stable performance
- ABOD if in the mood for Bayesian :-(
Cost-Sensitive Multiclass Classification

Outline

Cost-Sensitive Binary Classification

Bayesian Perspective of Cost-Sensitive Binary Classification

Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Cost-Sensitive Multiclass Classification

Bayesian Perspective of Cost-Sensitive Multiclass Classification

Cost-Sensitive Classification by Reweighting and Relabeling

Cost-Sensitive Classification by Binary Classification

Cost-Sensitive Classification by Regression

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Which Digit Did You Write?

- a **multiclass classification** problem
 —grouping “pictures” into different “categories”

C’mon, we know about
multiclass classification all too well! :-)
Cost-Sensitive Multiclass Classification

Performance Evaluation \((g(x) \approx f(x)?)\)

- ZIP code recognition:
 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 1: one-dollar mistake; 2: no mistake;
 3: one-dollar mistake; 4: two-dollar mistake
- evaluation by formation similarity:
 1: not very similar; 2: very similar;
 3: somewhat similar; 4: a silly prediction

different applications:
evaluate mis-predictions differently
ZIP Code Recognition

1: wrong; 2: right; 3: wrong; 4: wrong

- **regular** multiclass classification: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of h on some (x, y):

 $$\text{classification cost} = \left\lceil y \neq h(x) \right\rceil$$

— as discussed in regular binary classification

regular multiclass classification: **well-studied**, many good algorithms
Check Value Recognition

2

1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: two-dollar mistake

- cost-sensitive multiclass classification: different costs for different mis-predictions
- e.g. prediction error of h on some (x, y):

 \[
 \text{absolute cost} = |y - h(x)|
 \]

next: cost-sensitive multiclass classification
What is the Status of the Patient?

- another **classification** problem
 —grouping “patients” into different “status”

H1N1-infected **cold-infected** **healthy**

are all mis-prediction costs equal?
Patient Status Prediction

Error measure = society cost

<table>
<thead>
<tr>
<th>actual</th>
<th>predicted</th>
<th>H7N9</th>
<th>cold</th>
<th>healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7N9</td>
<td></td>
<td>0</td>
<td>1000</td>
<td>100000</td>
</tr>
<tr>
<td>cold</td>
<td>100</td>
<td>0</td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>healthy</td>
<td>100</td>
<td>30</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

- H7N9 mis-predicted as healthy: **very high cost**
- cold mis-predicted as healthy: **high cost**
- cold correctly predicted as cold: **no cost**

Human doctors consider costs of decision; can computer-aided diagnosis do the same?
What is the Type of the Movie?

- ?
- romance
- fiction
- terror

customer 1 who hates romance but likes terror

<table>
<thead>
<tr>
<th>Error Measure = non-satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
</tr>
<tr>
<td>romance</td>
</tr>
</tbody>
</table>

customer 2 who likes terror and romance

| actual | predicted | romance | fiction | terror |
| romance | romance | 0 | 5 | 3 |

different customers:

evaluate mis-predictions differently
Cost-Sensitive Multiclass Classification Tasks

Movie Classification with Non-Satisfaction

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>Romance</th>
<th>Fiction</th>
<th>Terror</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer 1, Romance</td>
<td>0</td>
<td>5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Customer 2, Romance</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Patient Diagnosis with Society Cost

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>H7N9</th>
<th>Cold</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7N9</td>
<td>0</td>
<td>1000</td>
<td>100000</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>100</td>
<td>0</td>
<td>30000</td>
<td></td>
</tr>
<tr>
<td>Healthy</td>
<td>100</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Check Digit Recognition with Absolute Cost

\[C(y, h(x)) = |y - h(x)| \]
Cost Vector

cost vector c: a row of cost components

- customer 1 on a romance movie: $c = (0, 5, 100)$
- an H7N9 patient: $c = (0, 1000, 100000)$
- absolute cost for digit 2: $c = (1, 0, 1, 2)$
- “regular” classification cost for label 2: $c_c^{(2)} = (1, 0, 1, 1)$

regular classification: special case of cost-sensitive classification
Setup: Matrix-Based Cost-Sensitive Binary Classification

Given

\[N \text{ examples, each } (\text{input } x_n, \text{label } y_n) \in \mathcal{X} \times \{1, 2, \ldots, K\} \]

and cost matrix \(C \in \mathbb{R}^{K \times K} \)

—will assume \(C(y, y) = 0 = \min_{1 \leq k \leq K} C(y, k) \)

Goal

a classifier \(g(x) \) that

pays a small cost \(C(y, g(x)) \)

on future **unseen** example \((x, y)\)

extension of ‘class-weighted’ cost-sensitive binary classification
Cost-Sensitive Multiclass Classification

Setup: Vector-Based Cost-Sensitive Binary Classification

Given

\[N \text{ examples, each } (\text{input } x_n, \text{label } y_n) \in \mathcal{X} \times \{1, 2, \ldots, K\} \]

and cost vector \(c_n \in \mathbb{R}^K \)

—will assume \(c_n[y_n] = 0 = \min_{1 \leq k \leq K} c_n[k] \)

Goal

a classifier \(g(x) \) that pays a small cost \(c[g(x)] \) on future unseen example \((x, y, c)\)

- will assume \(c[y] = 0 = c_{\min} = \min_{1 \leq k \leq K} c[k] \)
- note: \(y \) not really needed in evaluation

extension of ‘example-weighted’ cost-sensitive binary classification
Which Age-Group?

- small mistake—classify a child as a teen;
 big mistake—classify an infant as an adult

- cost matrix $C(y, g(x))$ for embedding ‘order’: $C = \begin{pmatrix}
0 & 1 & 4 & 5 \\
1 & 0 & 1 & 3 \\
3 & 1 & 0 & 2 \\
5 & 4 & 1 & 0
\end{pmatrix}$

cost-sensitive classification can help solve many other problems, such as **ordinal ranking**
Outline

Cost-Sensitive Binary Classification

Bayesian Perspective of Cost-Sensitive Binary Classification

Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Cost-Sensitive Multiclass Classification

Bayesian Perspective of Cost-Sensitive Multiclass Classification

Cost-Sensitive Classification by Reweighting and Relabeling

Cost-Sensitive Classification by Binary Classification

Cost-Sensitive Classification by Regression

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Key Idea: Conditional Probability Estimator

Goal (Matrix Setup)

A classifier \(g(\mathbf{x}) \) that pays a small cost \(C(y, g(\mathbf{x})) \) on future **unseen** example \((\mathbf{x}, y)\)

- **If** \(P(y|\mathbf{x}) \) known
 - Bayes optimal \(g^*(\mathbf{x}) = \arg\min_{1\leq k\leq K} \sum_{y=1}^{K} P(y|\mathbf{x})C(y, k) \)
- **If** \(p(y, \mathbf{x}) \approx P(y|\mathbf{x}) \) well
 - Approximately good \(g_p(\mathbf{x}) = \arg\min_{1\leq k\leq K} \sum_{y=1}^{K} p(y, \mathbf{x})C(y, k) \)

How to get conditional probability estimator \(p \)?

Logistic regression, Naïve Bayes, \ldots
Approximate Bayes-Optimal Decision

if $p(y, x) \approx P(+1|x)$ **well**

(Domingos, 1999)

approximately good $g_p(x) = \arg\min_{k \in \{1, 2, ..., K\}} \sum_{y=1}^{K} p(y, x)C(y, k)$

Approximate Bayes-Optimal Decision (ABOD) Approach

1. use your favorite algorithm on $\{(x_n, y_n)\}$ to get $p(y, x) \approx P(y|x)$
2. for each new input x, predict its class using $g_p(x)$ above

a simple extension from binary classification:
probability estimate + Bayes-optimal decision
ABOD on Artificial Data

1. use your favorite algorithm on \(\{(x_n, y_n)\} \) to get \(p(y, x) \approx P(y|x) \)
2. for each new input \(x \), predict its class using \(g_p(x) \)

LogReg

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 4 \\
2 & 4 & 0 & 1 & 2 \\
3 & 2 & 4 & 0 & 1 \\
4 & 1 & 2 & 4 & 0 \\
\end{array}
\]
Pros and Cons of ABOD

Pros
- optimal: if good probability estimate: \(p(y, x) \) really close to \(P(y|x) \)
- simple: with training (probability estimate) unchanged, and prediction (threshold) changed only a little

Cons
- ‘difficult’: good probability estimate often more difficult than good multiclass classification
- ‘restricted’: only applicable to class-weighted setup —need ‘full picture’ of cost matrix
- ‘slow prediction’: need sophisticated calculation at prediction stage

Can we use any multiclass classification algorithm for ABOD?
MetaCost Approach

Approximate Bayes-Optimal Decision (ABOD) Approach

1. use your favorite algorithm on \{ (x_n, y_n) \} to get \(p(y, x) \approx P(y|x) \)
2. for each new input \(x \), predict its class using \(g_p(x) \)

MetaCost Approach (Domingos, 1999)

1. use your favorite multiclass classification algorithm on bootstrapped \{ (x_n, y_n) \} and aggregate the classifiers to get \(p(y, x) \approx P(y|x) \)
2. for each given input \(x_n \), relabel it to \(y'_n \) using \(g_p(x) \)
3. run your favorite multiclass classification algorithm on relabeled \{ (x_n, y'_n) \} to get final classifier \(g \)
4. for each new input \(x \), predict its class using \(g(x) \)

pros: any multiclass classification algorithm can be used
MetaCost on Semi-Real Data

(Domingos, 1999)
- some “random” cost with UCI data
- MetaCost+C4.5: cost-sensitive
- C4.5: regular

not surprisingly,

considering the cost properly does help
Outline

Cost-Sensitive Binary Classification

Bayesian Perspective of Cost-Sensitive Binary Classification

Non-Bayesian Perspective of Cost-Sensitive Binary Classification

Cost-Sensitive Multiclass Classification

Bayesian Perspective of Cost-Sensitive Multiclass Classification

Cost-Sensitive Classification by Reweighting and Relabeling

Cost-Sensitive Classification by Binary Classification

Cost-Sensitive Classification by Regression

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Recall: Example-Weighting Useful for Binary

can example weighting be used for multiclass?

Yes! an elegant solution if using cost matrix with special properties (Zhou, 2010)

\[
\frac{C(i, j)}{C(j, i)} = \frac{w_i}{w_j}
\]

what if using cost vectors without special properties?
Key Idea: Cost Transformation

\[\begin{pmatrix} 0 & 1000 \\ c \end{pmatrix} = \begin{pmatrix} 1000 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

\# of copies

classification costs

\[\begin{pmatrix} 3 & 2 & 3 & 4 \\ \text{cost } c \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]

mixture weights \(q_\ell \)

classification costs

- **split** the cost-sensitive example:
 \((x, 2)\) with \(c = (3, 2, 3, 4)\) equivalent to
 a weighted mixture \(\{(x, 1, 1), (x, 2, 2), (x, 3, 1)\}\)

cost equivalence:
\[c[h(x)] = \sum_{\ell=1}^{K} q_\ell [\ell \neq h(x)] \text{ for any } h \]
Meaning of Cost Equivalence

\[c[h(x)] = \sum_{\ell=1}^{K} q_\ell \mathbb{1}[\ell \neq h(x)] \]

- **on one** \((x, y, c)\)
 - wrong prediction charged by \(c[h(x)]\)

- **on all** \((x, \ell, q_\ell)\)
 - wrong prediction charged by total weighted classification error — weighted classification

Weighted classification \(\leadsto\) regular classification?

- same as binary (with CPEW) when \(q_\ell \geq 0\)

\[
\min_g \text{ expected LHS} = \min_g \text{ expected RHS}
\]

- (original cost-sensitive problem)
- (a regular problem when \(q_\ell \geq 0\))
Cost Transformation Methodology: Preliminary

1. split each training example \((x_n, y_n, c_n)\) to a weighted mixture \(\{(x_n, \ell, q_{n,\ell})\}_{\ell=1}^{K}\)
2. apply regular/weighted classification algorithm on the weighted mixtures \(\bigcup_{n=1}^{N} \{(x_n, \ell, q_{n,\ell})\}_{\ell=1}^{K}\)

- by \(c[g(x)] = \sum_{\ell=1}^{K} q_{\ell} [\ell \neq g(x)]\) (cost equivalence),
 good \(g\) for new regular classification problem
 \(\Rightarrow\) good \(g\) for original cost-sensitive classification problem
- regular classification: needs \(q_{n,\ell} \geq 0\)

but what if \(q_{n,\ell}\) negative?
Similar Cost Vectors

\[
\begin{pmatrix}
1 & 0 & 1 & 2 \\
3 & 2 & 3 & 4
\end{pmatrix}
= \begin{pmatrix}
1/3 & 4/3 & 1/3 & -2/3 \\
1 & 2 & 1 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

- negative \(q_\ell \): cannot split
- but \(\hat{c} = (1, 0, 1, 2) \) is similar to \(c = (3, 2, 3, 4) \):
 for any classifier \(g \),

\[
\hat{c}[g(x)] + \text{constant} = c[g(x)] = \sum_{\ell=1}^{K} q_\ell \mathbb{1}[\ell \neq g(x)]
\]

- constant can be dropped during minimization

\[
\min_g \text{ expected } \hat{c}[g(x)] \quad \text{(original cost-sensitive problem)}
= \min_g \text{ expected LHS} \quad \text{(a regular problem when } q_\ell \geq 0)\]
Cost Transformation Methodology: Revised

1. shift each training cost \hat{c}_n to a similar and “splittable” c_n

2. split (x_n, y_n, c_n) to a weighted mixture $\{ (x_n, \ell, q_n, \ell) \}_{\ell=1}^K$

3. apply regular classification algorithm on the weighted mixtures

$$\bigcup_{n=1}^{N} \{ (x_n, \ell, q_n, \ell) \}_{\ell=1}^K$$

- **splittable**: $q_{n,\ell} \geq 0$

- by cost equivalence after shifting:

 good g for new regular classification problem

 \equiv good g for original cost-sensitive classification problem

but infinitely many similar and splittable c_n!
Uncertainty in Mixture

- a single example $\{(x, 2)\}$ —**certain** that the desired label is 2
- a mixture $\{(x, 1, 1), (x, 2, 2), (x, 3, 1)\}$ sharing the same x —**uncertainty** in the desired label (25%: 1, 50%: 2, 25%: 3)
- over-shifting adds unnecessary mixture uncertainty:

\[
\begin{pmatrix}
3 & 2 & 3 & 4 \\
33 & 32 & 33 & 34
\end{pmatrix}
\quad =
\begin{pmatrix}
1 & 2 & 1 & 0 \\
11 & 12 & 11 & 10
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

should choose a similar and splittable c with **minimum mixture uncertainty**
Cost Transformation Methodology (Lin, 2010)

1. Shift each training cost \(\hat{c}_n \) to a similar and splittable \(c_n \) with minimum "mixture uncertainty"
2. Split \((x_n, y_n, c_n) \) to a weighted mixture \(\{(x_n, \ell, q_n, \ell)\}_{\ell=1}^{K} \)
3. Apply regular classification algorithm on the weighted mixtures

\[
\bigcup_{n=1}^{N} \left\{ (x_n, \ell, q_n, \ell) \right\}_{\ell=1}^{K}
\]

- Mixture uncertainty: entropy of normalized \((q_1, q_2, \ldots, q_K) \)
- A simple and unique optimal shifting exists for every \(\hat{c} \)

Good \(g \) for new regular classification problem
\(\equiv \) Good \(g \) for original cost-sensitive classification problem
Data Space Expansion Approach (DSE) Approach (Abe, 2004)

1. For each \((x_n, y_n, c_n)\) and \(\ell\), let
 \[q_{n,\ell} = \max_{1 \leq k \leq K} c_n[k] - c_n[\ell] \]

2. Apply your favorite multiclass classification algorithm on the weighted mixtures
 \[\bigcup_{n=1}^{N} \{(x_n, \ell, q_{n,\ell})\} \]
 to get \(g(x)\)

3. For each new input \(x\), predict its class using \(g(x)\)

- Detailed explanation provided by the cost transformation methodology discussed above (Lin, 2010)
- Extension of Cost-Proportionate Example Weighting, but now with relabeling!

Pros: any multiclass classification algorithm can be used
DSE versus MetaCost on Semi-Real Data

(Abe, 2004)

<table>
<thead>
<tr>
<th></th>
<th>MetaCost</th>
<th>DSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>annealing</td>
<td>206.8</td>
<td>127.1</td>
</tr>
<tr>
<td>solar</td>
<td>5317</td>
<td>110.9</td>
</tr>
<tr>
<td>kdd99</td>
<td>49.39</td>
<td>46.68</td>
</tr>
<tr>
<td>letter</td>
<td>129.6</td>
<td>114.0</td>
</tr>
<tr>
<td>splice</td>
<td>49.95</td>
<td>135.5</td>
</tr>
<tr>
<td>satellite</td>
<td>104.4</td>
<td>116.8</td>
</tr>
</tbody>
</table>

- some “random” cost with UCI data
- C4.5 with COSTING for weighted classification

DSE comparable to MetaCost
Cons of DSE: Unavoidable (Minimum) Uncertainty

Original Cost-Sensitive Classification Problem

- individual examples with certainty

New Regular Classification Problem

- mixtures with unavoidable uncertainty

- cost embedded as weight + label
- new problem usually **harder** than original one

need **robust** multiclass classification algorithm to deal with uncertainty
Outline

Cost-Sensitive Binary Classification
Bayesian Perspective of Cost-Sensitive Binary Classification
Non-Bayesian Perspective of Cost-Sensitive Binary Classification
Cost-Sensitive Multiclass Classification
Bayesian Perspective of Cost-Sensitive Multiclass Classification
Cost-Sensitive Classification by Reweighting and Relabeling

Cost-Sensitive Classification by Binary Classification
Cost-Sensitive Classification by Regression
Cost-and-Error-Sensitive Classification with Bioinformatics Application
Cost-Sensitive Ordinal Ranking with Information Retrieval Application
Summary
Key Idea: Design Robust Multiclass Algorithm

One-Versus-One: A Popular Classification Meta-Method

1. for a pair \((i, j)\), take all examples \((x_n, y_n)\) that \(y_n = i\) or \(j\) (original one-versus-one)

2. for a pair \((i, j)\), from each weighted mixture \(\{(x_n, \ell, q_n,\ell)\}\) with \(q_{n,i} > q_{n,j}\), take \((x_n, i)\) with weight \(q_{n,i} - q_{n,j}\); vice versa (robust one-versus-one)

3. train a binary classifier \(\hat{g}^{(i,j)}\) using those examples

4. repeat the previous two steps for all different \((i, j)\)

5. predict using the votes from \(\hat{g}^{(i,j)}\)

- un-shifting inside the meta-method to remove uncertainty
- robust step makes it suitable for cost transformation methodology

cost-sensitive one-versus-one:
cost transformation + robust one-versus-one
for a pair \((i, j)\), transform all examples \((x_n, y_n)\) to
\[
\left(x_n, \arg\min_{k \in \{i, j\}} c_n[k] \right)
\]
with weight \(|c_n[i] - c_n[j]|\)

2. train a binary classifier \(\hat{g}^{(i,j)}\) using those examples

3. repeat the previous two steps for all different \((i, j)\)

4. predict using the votes from \(\hat{g}^{(i,j)}\)

- comes with **good theoretical guarantee**:
 \[
 \text{test cost of final classifier} \leq 2 \sum_{i < j} \text{test cost of } \hat{g}^{(i,j)}
 \]

- **simple, efficient**, and takes original OVO as **special case**

physical meaning:

each \(\hat{g}^{(i,j)}\) answers yes/no question “prefer \(i\) or \(j\)?”
CSOVO on Semi-Real Data

(Lin, 2010)

- some “random” cost with UCI data
- CSOVO-SVM: cost-sensitive
- OVO-SVM: regular

not surprisingly again,

considering the cost properly does help
CSOVO for Ordinal Ranking

(Lin, 2010)

- absolute cost with benchmark ordinal ranking data
- **CSOVO-SVM**: cost-sensitive
- **OVO-SVM**: regular

CSOVO significantly better for ordinal ranking
Other Approaches via Weighted Binary Classification

Filter Tree (FT): $K - 1$ binary classifiers (Beygelzimer, 2007)

- Is the lowest cost within labels $\{1, 4\}$ or $\{2, 3\}$?
- Is the lowest cost within label $\{1\}$ or $\{4\}$?

Weighted All Pairs (WAP): $\frac{K(K-1)}{2}$ binary classifiers (Beygelzimer, 2005)

- Similar to CSOVO, with theoretically better way of calculating weights

Sensitive Error Correcting Output Code (SECOC): $(T \cdot K)$ binary classifiers (Langford, 2005)

Extended Binary Classification: K binary classifiers (Lin, 2012)

- Is lowest-cost $y \leq$ some k?
- More proper for ordinal ranking
Outline

Cost-Sensitive Binary Classification
Bayesian Perspective of Cost-Sensitive Binary Classification
Non-Bayesian Perspective of Cost-Sensitive Binary Classification
Cost-Sensitive Multiclass Classification
Bayesian Perspective of Cost-Sensitive Multiclass Classification
Cost-Sensitive Classification by Reweighting and Relabeling
Cost-Sensitive Classification by Binary Classification
Cost-Sensitive Classification by Regression
Cost-and-Error-Sensitive Classification with Bioinformatics Application
Cost-Sensitive Ordinal Ranking with Information Retrieval Application
Summary
Key Idea: Cost Estimator

Goal

A classifier $g(x)$ that pays a small cost $c[g(x)]$ on future unseen example (x, y, c)

if every $c[k]$ known

Optimal

$$g^*(x) = \arg\min_{1 \leq k \leq K} c[k]$$

if $r_k(x) \approx c[k]$ well

Approximately good

$$g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x)$$

How to get cost estimator r_k? **regression**
Given

\(N\) examples, each (input \(x_n\), label \(y_n\), cost \(c_n\)) \(\in \mathcal{X} \times \{1, 2, \ldots, K\} \times \mathbb{R}^K\)

<table>
<thead>
<tr>
<th>input (x_1)</th>
<th>(c_n[1])</th>
<th>input (x_1)</th>
<th>(c_n[2])</th>
<th>(r_1)</th>
<th>input (x_1)</th>
<th>(c_n[K])</th>
<th>(r_K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0,</td>
<td>(x_1)</td>
<td>2,</td>
<td>(r_1)</td>
<td>(x_1)</td>
<td>1</td>
<td>(r_K)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>1,</td>
<td>(x_2)</td>
<td>3,</td>
<td>(r_2)</td>
<td>(x_2)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(x_N)</td>
<td>6,</td>
<td>(x_N)</td>
<td>1,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

want: \(r_k(x) \approx c[k]\) for all future \((x, y, c)\) and \(k\)
Cost-Sensitive Classification by Regression

The Reduction Framework

1. Transform cost-sensitive examples \((x_n, y_n, c_n)\) to regression examples \((x_{n,k}, Y_{n,k}) = (x_n, c_n[k])\).

2. Use your favorite algorithm on the regression examples and get estimators \(r_k(x)\).

3. For each new input \(x\), predict its class using \(g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x)\).

The reduction-to-regression framework: systematic & easy to implement.
Theoretical Guarantees (1/2)

\[g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x) \]

Theorem (Absolute Loss Bound)

For any set of estimators (cost estimators) \(\{r_k\}_{k=1}^K \) and for any example \((x, y, c)\) with \(c[y] = 0\),

\[c[g_r(x)] \leq \sum_{k=1}^{K} |r_k(x) - c[k]|. \]

low-cost classifier \(\iff\) accurate estimator
Theoretical Guarantees (2/2)

\[g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x) \]

Theorem (Squared Loss Bound)

For any set of estimators (cost estimators) \(\{r_k\}_{k=1}^K \) and for any example \((x, y, c)\) with \(c[y] = 0\),

\[
 c[g_r(x)] \leq \sqrt{2 \sum_{k=1}^{K} (r_k(x) - c[k])^2}.
\]

applies to common least-square regression
Cost-Sensitive Classification by Regression

A Pictorial Proof

\[\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} |r_k(\mathbf{x}) - \mathbf{c}[k]| \]

- Assume \(\mathbf{c} \) ordered and not degenerate:
 \(y = 1; 0 = \mathbf{c}[1] < \mathbf{c}[2] \leq \cdots \leq \mathbf{c}[K] \)

- Assume mis-prediction \(g_r(\mathbf{x}) = 2 \):
 \(r_2(\mathbf{x}) = \min_{1 \leq k \leq K} r_k(\mathbf{x}) \leq r_1(\mathbf{x}) \)

\[\Delta_1 \leq |\mathbf{c}[2] - \mathbf{c}[1]| \leq |\Delta_1| + |\Delta_2| \leq \sum_{k=1}^{K} |r_k(\mathbf{x}) - \mathbf{c}[k]| \]
let $\Delta_1 \equiv r_1(x) - c[1]$ and $\Delta_2 \equiv c[2] - r_2(x)$

1. $\Delta_1 \geq 0$ and $\Delta_2 \geq 0$: $c[2] \leq \Delta_1 + \Delta_2$
2. $\Delta_1 \leq 0$ and $\Delta_2 \geq 0$: $c[2] \leq \Delta_2$
3. $\Delta_1 \geq 0$ and $\Delta_2 \leq 0$: $c[2] \leq \Delta_1$

$c[2] \leq \max(\Delta_1, 0) + \max(\Delta_2, 0) \leq |\Delta_1| + |\Delta_2|$

![Diagram](image-url)
Cost-Sensitive Classification by Regression

Tighter Bound with One-sided Loss

Define **one-sided loss** \(\xi_k \equiv \max(\Delta_k, 0) \)

with

\[
\Delta_k \equiv \left(r_k(x) - c[k] \right) \quad \text{if} \quad c[k] = c_{\text{min}}
\]

\[
\Delta_k \equiv \left(c[k] - r_k(x) \right) \quad \text{if} \quad c[k] \neq c_{\text{min}}
\]

Intuition

- \(c[k] = c_{\text{min}} \): wish to have \(r_k(x) \leq c[k] \)
- \(c[k] \neq c_{\text{min}} \): wish to have \(r_k(x) \geq c[k] \)

—both wishes same as \(\Delta_k \leq 0 \) and hence \(\xi_k = 0 \)

One-sided Loss Bound:

\[
c[g_r(x)] \leq \sum_{k=1}^{K} \xi_k \leq \sum_{k=1}^{K} |\Delta_k|
\]
Cost-Sensitive Classification by Regression

The Improved Reduction Framework

1. transform cost-sensitive examples \((x_n, y_n, c_n)\) to regression examples
2. use a one-sided regression algorithm to get estimators \(r_k(x)\)
3. for each new input \(x\), predict its class using \(g_r(x) = \text{argmin}_{1 \leq k \leq K} r_k(x)\)

(Tu, 2010)

the reduction-to-OSR framework: need a good OSR algorithm
Regularized One-sided Hyper-linear Regression

Given

\[(x_{n,k}, Y_{n,k}, Z_{n,k}) = (x_n, c_n[k], 2[c_n[k] = c_n[y_n]] - 1)\]

Training Goal

all training \(\xi_{n,k} = \max \left(\frac{Z_{n,k}(r_k(x_{n,k}) - Y_{n,k}) - \Delta_{n,k}}{\lambda}, 0 \right)\) small

—will drop \(k\)

\[
\min_{w,b} \frac{\lambda}{2} \langle w, w \rangle + \sum_{n=1}^{N} \xi_n
\]

to get \(r_k(x) = \langle w, \phi(x) \rangle + b\)
One-sided Support Vector Regression

Regularized One-sided Hyper-linear Regression

\[
\min_{\mathbf{w}, b} \quad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_n \\
\xi_n = \max \left(\mathbf{Z}_n \cdot (r_k(\mathbf{x}_n) - Y_n), 0 \right)
\]

Standard Support Vector Regression

\[
\min_{\mathbf{w}, b} \quad \frac{1}{2C} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} (\xi_n + \xi^*_n) \\
\xi_n = \max \left(+1 \cdot (r_k(\mathbf{x}_n) - Y_n - \epsilon), 0 \right) \\
\xi^*_n = \max \left(-1 \cdot (r_k(\mathbf{x}_n) - Y_n + \epsilon), 0 \right)
\]

OSR-SVM = SVR + \(0 \rightarrow \epsilon\) + (keep \(\xi_n\) or \(\xi^*_n\) by \(\mathbf{Z}_n\))
OSR-SVM: $g_r(x) = \text{argmin } r_k(x)$

$$
\min_{w,b} \frac{\lambda}{2} \langle w, w \rangle + \sum_{n=1}^{N} \xi_n \\
\text{with } r_k(x) = \langle w, \phi(x) \rangle + b \\
\xi_n = \max (Z_n \cdot (r_k(x_n) - Y_n), 0)
$$

OVA-SVM: $g_r(x) = \text{argmax } q_k(x)$

$$
\text{with } q_k(x) = \langle w, \phi(x) \rangle + b \\
\xi_n = \max (-Z_n \cdot q_k(x_n) + 1, 0)
$$

OVA-SVM: special case that replaces Y_n (i.e. $c_n[k]$) by $-Z_n$
OSR-SVM on Semi-Real Data

(Tu, 2010)

- OSR: a cost-sensitive extension of OVA
- OVA: regular SVM

OSR often significantly better than OVA
OSR versus FT on Semi-Real Data

(Tu, 2010)

- OSR (per-class): $O(K)$ training, $O(K)$ prediction
- FT (tournament): $O(K)$ training, $O(\log_2 K)$ prediction

FT faster, but OSR better performing
OSR versus WAP on Semi-Real Data

(Tu, 2010)

- OSR (per-class): $O(K)$ training, $O(K)$ prediction
- WAP (pairwise): $O(K^2)$ training, $O(K^2)$ prediction

OSR faster and comparable performance
OSR versus SECOC on Semi-Real Data

(Tu, 2010)

- **OSR (per-class):** $O(K)$ training, $O(K)$ prediction
- **SECOC** (error-correcting): big $O(K)$ training, big $O(K)$ prediction

OSR faster and much better performance
Biased Personal Favorites

- OSR: fast training, fast prediction, very good performance
- WAP or CSOVO: stable performance, pretty strong theoretical guarantee
- FT: fast training, very fast prediction, good performance, strong theoretical guarantee
- MetaCost if in the mood for Bayesian :-)

Hsuan-Tien Lin (NTU CSIE)
Outline

Cost-Sensitive Binary Classification
Bayesian Perspective of Cost-Sensitive Binary Classification
Non-Bayesian Perspective of Cost-Sensitive Binary Classification
Cost-Sensitive Multiclass Classification
Bayesian Perspective of Cost-Sensitive Multiclass Classification
Cost-Sensitive Classification by Reweighting and Relabeling
Cost-Sensitive Classification by Binary Classification
Cost-Sensitive Classification by Regression
Cost-and-Error-Sensitive Classification with Bioinformatics Application
Cost-Sensitive Ordinal Ranking with Information Retrieval Application
Summary
A Real Medical Application: Classifying Bacteria

The Problem

- by human doctors: **different treatments** ↔ **serious costs**
- cost matrix averaged from two doctors:

```
<table>
<thead>
<tr>
<th></th>
<th>Ab</th>
<th>Ecoli</th>
<th>HI</th>
<th>KP</th>
<th>LM</th>
<th>Nm</th>
<th>Psa</th>
<th>Spn</th>
<th>Sa</th>
<th>GBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Ecoli</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>HI</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>KP</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>LM</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Nm</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Psa</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Spn</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Sa</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>GBS</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
```

is cost-sensitive classification **realistic**?
OSR best: cost-sensitive classification is helpful
Soft Cost-sensitive Classification

The Problem

• cost-sensitive classifier: low cost but high error
• traditional classifier: low error but high cost
• how can we get the blue classifiers?: low error and low cost

Cost-and-error-sensitive: more suitable for medical needs
Improved OSR for Cost and Error on Semi-Real Data

key idea (Jan, 2012): consider a ‘modified’ cost that mixes original cost and ‘regular cost’

Cost

<table>
<thead>
<tr>
<th></th>
<th>iris</th>
<th>wine</th>
<th>glass</th>
<th>vehicle</th>
<th>vowel</th>
<th>segment</th>
<th>dna</th>
<th>satimage</th>
<th>usps</th>
<th>zoo</th>
<th>splice</th>
<th>ecoli</th>
<th>soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
<tr>
<td>≈</td>
<td></td>
</tr>
</tbody>
</table>

Error

<table>
<thead>
<tr>
<th></th>
<th>iris</th>
<th>wine</th>
<th>glass</th>
<th>vehicle</th>
<th>vowel</th>
<th>segment</th>
<th>dna</th>
<th>satimage</th>
<th>usps</th>
<th>zoo</th>
<th>splice</th>
<th>ecoli</th>
<th>soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
<tr>
<td>◯</td>
<td></td>
</tr>
</tbody>
</table>

improves other cost-sensitive classification algorithms, too

Hsuan-Tien Lin (NTU CSIE)
Outline

Cost-Sensitive Binary Classification
Bayesian Perspective of Cost-Sensitive Binary Classification
Non-Bayesian Perspective of Cost-Sensitive Binary Classification
Cost-Sensitive Multiclass Classification
Bayesian Perspective of Cost-Sensitive Multiclass Classification
Cost-Sensitive Classification by Reweighting and Relabeling
Cost-Sensitive Classification by Binary Classification
Cost-Sensitive Classification by Regression
Cost-and-Error-Sensitive Classification with Bioinformatics Application

Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
not just for searching good machine learning book :-);
but also for recommendation systems & other web service
Three Properties of Search-Engine Ranking

- listwise with focus on top ranks
 - query-oriented & personalized
 - emphasis on highly-preferred (relevant) items
- large scale
 - both during training & testing
 - e.g. Yahoo! Learning-To-Rank Challenge 2010: 473K training URLs, 166K test URLs
- ordinal data
 - labeled qualitatively by human, e.g. \{highly irrelevant, irrelevant, neutral, relevant, highly relevant\}
 - lack of quantitative info

search-engine ranking problem:
 learning a ranker from large scale ordinal data
 with focus on top ranks
Search-Engine Ranking Setup

Given
for query indices $q = 1, 2, \ldots, Q$,

- a set of related documents $\{x_{q,i}\}_{i=1}^{N(q)}$
- ordinal relevance $y_{q,i} \in \mathcal{Y} = \{0, 1, \ldots, K\}$ for each document $x_{q,i}$

with large Q and $N(q)$

Goal
a ranker $r(x)$ that “accurately ranks” top $x_{Q+1,i}$ from an unseen set of documents $\{x_{Q+1,i}\}$

how to evaluate accurate ranking around the top?
Expected Reciprocal Rank \((\text{ERR}; \text{Chapelle, 2009})\)

Assume for any example \((\text{document } x, \text{rank } y)\),

\[
P(\text{user chooses document } x) = \frac{2^y - 1}{2^K}
\]

Assumption: Stopping Probability of List of Documents

\[
P(\text{user stops at position } i \text{ of list}) = P(\text{doesn't stop at pos. } i - 1) \times \frac{1}{i} P(\text{chooses document at pos. } i)
\]

ERR: Total Discounted Stopping Probability of List

\[
\text{ERR}_q(r) \equiv \sum_{i=1}^{N(q)} \frac{1}{i} P(\text{user stops at position } i \text{ of the list ordered by } r)
\]

large ERR ⇔ small \(i\) matches large \(P\)
⇔ good ranking around top
Cost-Sensitive Ordinal Classification via Regression (COCR)

- Reduction from listwise ranking (ERR) to cost-sensitive (ordinal) classification (approximately)
 — Aim for top rank and large scale data
- Reduction from cost-sensitive ordinal classification to binary classification
 — Aim for respecting ordinal data
- Reduction from binary classification to regression
 — Aim for large scale data and avoiding discrete ties

Costs can approximately embed true criteria of interest
Optimistic ERR (oERR) Cost for COCR

desired listwise criteria

How to make \(\text{ERR}(r) \) close to \(\text{ERR}(p) \), the ERR of perfect ranker?

embed criteria within cost

\[
\text{ERR}(p) - \text{ERR}(r) \leq \sum_{i=1}^{N(q)} \left(2^{y_{q,i}} - 2^{r_{x_{q,i}}} \right)^2 + \Delta
\]

- \(\Delta \approx 0 \) if \(r \approx p \) (optimistic)
- then, \(c[k] = (2^y - 2^k)^2 \) embeds ERR
- oERR cost can then be coupled with other ordinal ranking techniques to improve performance

not a very tight bound, but better than nothing
COCR on Benchmark Data

(Ruan, 2013)

<table>
<thead>
<tr>
<th>data set</th>
<th>Direct Regression</th>
<th>benchmark</th>
<th>oERR-COCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTRC1</td>
<td>0.4470</td>
<td>0.4484</td>
<td>0.4505</td>
</tr>
<tr>
<td>LTRC2</td>
<td>0.4440</td>
<td>0.4465</td>
<td>0.4461</td>
</tr>
<tr>
<td>MS10K</td>
<td>0.2643</td>
<td>0.2642</td>
<td>0.2792</td>
</tr>
<tr>
<td>MS30K</td>
<td>0.2748</td>
<td>0.2748</td>
<td>0.2942</td>
</tr>
</tbody>
</table>

- best ERR
- significantly better than direct regression

- oERR-COCR **usually the best**
Cost-Sensitive Binary Classification
Bayesian Perspective of Cost-Sensitive Binary Classification
Non-Bayesian Perspective of Cost-Sensitive Binary Classification
Cost-Sensitive Multiclass Classification
Bayesian Perspective of Cost-Sensitive Multiclass Classification
Cost-Sensitive Classification by Reweighting and Relabeling
Cost-Sensitive Classification by Binary Classification
Cost-Sensitive Classification by Regression
Cost-and-Error-Sensitive Classification with Bioinformatics Application
Cost-Sensitive Ordinal Ranking with Information Retrieval Application

Summary
Summary

- **cost-sensitive binary classification**: just the weights
 - Bayesian: Approximate Bayes Optimal Decision (Elkan, 2001)
 - non-Bayesian: Cost-Proportionate Example Weighting (Zadrozny, 2003)

- **cost-sensitive binary classification**: cost matrix/vectors
 - Bayesian: MetaCost (Domingos, 1999)
 - non-Bayesian:
 Data Space Expansion (Abe, 2004) (to multiclass),
 Cost-Sensitive One-Versus-One (Lin, 2012), ... (to binary),
 One-Sided Regression (Tu, 2010) (to regression)
 —most implemented here:
 http://www.csie.ntu.edu.tw/~htlin/program/cssvm/

- **beyond**:
 - cost-and-error-sensitive for medical application (Jan, 2012)
 - cost-sensitive, approximately, for information retrieval (Ruan, 2013)
 - cost-intervals (Liu, 2010)

Discussion welcomed on algorithm and **application** opportunities
Summary

Giants’ Shoulder

- **binary:**
 - Zadrozny et al., Cost-Sensitive Learning by Cost-Proportionate Example Weighting, 2003
 - Abu-Mostafa et al., Learning from Data: A Short Course, 2013

- **multiclass:**
 - Abe et al., An Iterative Method for Multi-Class Cost-Sensitive Learning, 2004
 - Beygelzimer et al., Error Limiting Reductions Between Classification Tasks, 2005
 - Langford and Beygelzimer, Sensitive Error Correcting Output Codes, 2005
 - Beygelzimer et al., Multiclass Classification with Filter Trees, 2007
 - Chapelle et al., Expected Reciprocal Rank for Graded Relevance, 2009
 - Tu and Lin, One-Sided Support Vector Regression for Multiclass Cost-Sensitive Classification, 2010
 - Lin, A Simple Cost-Sensitive Multiclass Classification Algorithm Using One-Versus-One Comparisons, 2010
 - Jan et al., Cost-Sensitive Classification on Pathogen Species of Bacterial Meningitis by Surface Enhanced Raman Scattering, 2011
 - Lin and Li, Reduction from Cost-Sensitive Ordinal Ranking to Weighted Binary Classification, 2012
 - Jan et al., A Simple Methodology for Soft Cost-Sensitive Classification, 2012
 - Ruan et al., Improving Ranking Performance with Cost-Sensitive Ordinal Classification via Regression, 2013
Acknowledgments

- ACML Organizers!
- Computational Learning Lab @ NTU and Learning Systems Group @ Caltech for discussions

final advertisement 😊:
my student’s work on bipartite ranking (last talk of the conference)

Wei-Yuan Shen and Hsuan-Tien Lin. Active Sampling of Pairs and Points for Large-scale Linear Bipartite Ranking. ACML 2013.

Thank you. Questions?