Deep Learning for Vision
BMVC 2013

Adam Coates
Stanford University
(Visiting Scholar: Indiana University, Bloomington)
What do we want ML to do?

• Given image, predict complex high-level patterns:

 “Cat”

Object recognition
What do we want ML to do?

• Given image, predict complex high-level patterns:

“Cat”

Object recognition

Detection
What do we want ML to do?

• Given image, predict complex high-level patterns:

 “Cat”

 Object recognition

 Detection

 Segmentation

 [Martin et al., 2001]
How is ML done?

- Machine learning often uses common pipeline with hand-designed feature extraction.
 - Final ML algorithm learns to make decisions starting from the higher-level representation.
 - Sometimes layers of increasingly high-level abstractions.
 - Constructed using prior knowledge about problem domain.

```
Feature Extraction → Machine Learning Algorithm

Prior Knowledge, Experience
```

“Cat”?
“Deep Learning”

- Deep Learning
 - Train *multiple layers* of features/abstractions from data.
 - Try to discover *representation* that makes decisions easy.

Deep Learning: train layers of features so that classifier works well.

“Cat”?
“Deep Learning”

• Why do we want “deep learning”?
 – Some decisions require many stages of processing.
 • Easy to invent cases where a “deep” model is compact but a shallow model is very large / inefficient.
 – We already, intuitively, hand-engineer “layers” of representation.
 • Let’s replace this with something automated!
 – Algorithms scale well with data and computing power.
 • In practice, one of the most consistently successful ways to get good results in ML.
 • Can try to take advantage of unlabeled data to learn representations before the task.
Have we been here before?

➤ Yes.
 – Basic ideas common to past ML and neural networks research.
 • Supervised learning is straight-forward.
 • Standard ML development strategies still relevant.
 • Some knowledge carried over from problem domains.

➤ No.
 – Faster computers; more data.
 – Better optimizers; better initialization schemes.
 • “Unsupervised pre-training” trick
 [Hinton et al. 2006; Bengio et al. 2006]
 – Lots of empirical evidence about what works.
 • Made useful by ability to “mix and match” components.
 [See, e.g., Jarrett et al., ICCV 2009]
Real impact

• DL systems are high performers in many tasks over many domains.

Image recognition [E.g., Krizhevsky et al., 2012]

Speech recognition [E.g., Heigold et al., 2013]

NLP [E.g., Socher et al., ICML 2011; Collobert & Weston, ICML 2008]
Outline

• ML refresher / crash course
 – Logistic regression
 – Optimization
 – Features

• Supervised deep learning
 – Neural network models
 – Back-propagation
 – Training procedures

• Supervised DL for images
 – Neural network architectures for images.
 – Application to Image-Net

• Debugging

• Unsupervised DL

• References / Resources
Outline

• ML refresher / crash course
• Supervised deep learning
• Supervised DL for images
• Debugging

• Unsupervised DL
 – Representation learning, unsupervised feature learning.
 – Greedy layer-wise training.
 – Example: sparse auto-encoders.
 – Other unsupervised learning algorithms.

• References / Resources
Supervised Learning

- Given *labeled* training examples:
 \[\mathcal{X} = \{(x^{(i)}, y^{(i)}): i = 1, \ldots, m\} \]

- For instance: \(x^{(i)}\) = vector of pixel intensities.
 \(y^{(i)}\) = object class ID.

- Goal: find \(f(x)\) to predict \(y\) from \(x\) on training data.
 - Hopefully: learned predictor works on “test” data.
Logistic Regression

• Simple binary classification algorithm
 – Start with a function of the form:
 \[f(x; \theta) \equiv \sigma(\theta^\top x) = \frac{1}{1 + \exp(-\theta^\top x)} \]
 – Interpretation: \(f(x) \) is probability that \(y = 1 \).
 • Sigmoid “nonlinearity” squashes linear function to [0,1].

\[\begin{align*}
 \mathcal{L}(\theta) &= -\sum_{i=1}^{m} \left(1\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta)) + \mathbb{P}(y^{(i)} = 1|x^{(i)}) \right. \\
 &\quad \left. - 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta)) + \mathbb{P}(y^{(i)} = 0|x^{(i)}) \right)
\end{align*} \]
Optimization

• How do we tune θ to minimize $\mathcal{L}(\theta)$?
• One algorithm: gradient descent
 – Compute gradient:
 \[
 \nabla_\theta \mathcal{L}(\theta) = \sum_{i}^{m} x^{(i)} \cdot (y^{(i)} - f(x^{(i)}; \theta))
 \]
 – Follow gradient “downhill”:
 \[
 \theta := \theta - \eta \nabla_\theta \mathcal{L}(\theta)
 \]
• Stochastic Gradient Descent (SGD): take step using gradient from only small batch of examples.
 – Scales to larger datasets. [Bottou & LeCun, 2005]
Is this enough?

• Loss is convex \Rightarrow we always find minimum.
• Works for simple problems:
 – Classify digits as 0 or 1 using pixel intensity.
 – Certain pixels are highly informative --- e.g., center pixel.
 ![00000 1111]
• Fails for even slightly harder problems.
 – Is this a coffee mug?
Why is vision so hard?

“Coffee Mug”

Pixel Intensity

Pixel intensity is a very poor representation.
Why is vision so hard?

Pixel 1

[72 160] Pixel Intensity

Pixel 2

+ Coffee Mug

- Not Coffee Mug
Why is vision so hard?

+ Coffee Mug

- Not Coffee Mug
Why is vision so hard?

Learning Algorithm

Is this a Coffee Mug?

+ Coffee Mug

- Not Coffee Mug
Features

handle? cylinder?
Features

handle? cylinder?

cylinder?

handle?

+ Coffee Mug

- Not Coffee Mug
Features

Is this a Coffee Mug?

Learning Algorithm

+ Coffee Mug

- Not Coffee Mug
Features

• Features are usually hard-wired transformations built into the system.
 – Formally, a function that maps raw input to a “higher level” representation.
 \[\Phi(x) : \mathbb{R}^n \rightarrow \mathbb{R}^K \]
 – Completely static --- so just substitute \(\varphi(x) \) for \(x \) and do logistic regression like before.
Features

• Features are usually hard-wired transformations built into the system.
 – Formally, a function that maps raw input to a “higher level” representation.
 \[\Phi(x) : \mathbb{R}^n \to \mathbb{R}^K \]
 – Completely static --- so just substitute \(\varphi(x) \) for \(x \) and do logistic regression like before.

Where do we get good features?
Features

• Huge investment devoted to building application-specific feature representations.
 – Find higher-level patterns so that final decision is easy to learn with ML algorithm.

Object Bank [Li et al., 2010]

Super-pixels
[Gould et al., 2008, Ren & Malik, 2003]

SIFT [Lowe, 1999]

Spin Images [Johnson & Hebert, 1999]
SUPERVISED DEEP LEARNING

Extension to neural networks
Basic idea

• We saw how to do supervised learning when the “features” $\phi(x)$ are fixed.
Basic idea

• We saw how to do supervised learning when the “features” \(\phi(x) \) are fixed.

 – Let’s extend to case where features are given by tunable functions with their own parameters.

\[
P(y = 1|x) = f(x; \theta, W) = \sigma(\theta^\top \sigma(Wx))
\]
Basic idea

- We saw how to do supervised learning when the “features” $\phi(x)$ are fixed.
- Let’s extend to case where features are given by tunable functions with their own parameters.

$$P(y = 1|x) = f(x; \theta, W) = \sigma(\theta^\top \sigma(Wx))$$

Outer part of function is same as logistic regression.

Inputs are “features”---one feature for each row of W:

$$\begin{bmatrix}
\sigma(w_1 x) \\
\sigma(w_2 x) \\
\vdots \\
\sigma(w_K x)
\end{bmatrix}$$
Basic idea

• To do supervised learning for two-class classification, minimize:

\[\mathcal{L}(\theta, W) = -\sum_{i=1}^{m} 1\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W)) \]

• Same as logistic regression, but now \(f(x) \) has multiple stages (“layers”, “modules”):

\[f(x; \theta, W) = \sigma(\theta^\top \sigma(Wx)) \]
Basic idea

• To do supervised learning for two-class classification, minimize:

\[
\mathcal{L}(\theta, W) = - \sum_{i} 1\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W))
\]

• Same as logistic regression, but now \(f(x) \) has multiple stages ("layers", "modules"):

\[
f(x; \theta, W) = \sigma(\theta^\top \sigma(Wx))
\]

![Diagram showing intermediate representation and prediction for \(\mathbb{P}(y = 1|x) \)]
Neural network

• This model is a sigmoid “neural network”:

\[\mathcal{L}(\theta, W) \]

\[y \]
Neural network

• This model is a sigmoid “neural network”:

\[
\mathcal{L}(\theta, W) \rightarrow y
\]
Neural network

• This model is a sigmoid “neural network”:

\[\mathcal{L}(\theta, W) \]

Flow of computation.
“Forward prop”
Neural network

• This model is a sigmoid “neural network”:

Flow of computation. “Forward prop”
Neural network

• This model is a sigmoid “neural network”:

Flow of computation. “Forward prop”
Neural network

- Can stack up several layers:

Must learn multiple stages of internal “representation”.

\[
\begin{align*}
&h'_1 & \quad h'_2 & \quad \cdots & \quad h'_K \\
&h_1 & \quad h_2 & \cdots & \quad h_K \\
x_1 & \quad x_2 & \cdots & \quad x_n
\end{align*}
\]
Neural network

• Can stack up several layers:

\[f(x; \theta, W_1, W_2) = \sigma(\theta^T \sigma(W_2 \sigma(W_1 x))) \]

Must learn multiple stages of internal "representation".
Neural network

- Can stack up several layers:

Must learn multiple stages of internal “representation”.

\[x \xrightarrow{\sigma(W_1 x)} h \xrightarrow{\sigma(W_2 h)} h' \xrightarrow{\sigma(\theta^\top h')} f \]
Back-propagation

• Minimize:

\[\mathcal{L}(\theta, W) = - \sum_{i}^{m} 1\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W)) \]

• To minimize \(\mathcal{L}(\theta, W) \) we need gradients:

\[\nabla_{\theta} \mathcal{L}(\theta, W) \text{ and } \nabla_{W} \mathcal{L}(\theta, W) \]

– Then use gradient descent algorithm as before.

• Formula for \(\nabla_{\theta} \mathcal{L}(\theta, W) \) can be found by hand (same as before); but what about \(W \)?
The Chain Rule

- Suppose we have a module that looks like:

\[
\begin{align*}
&\xrightarrow{z} \quad h(z; W) \quad \xrightarrow{h} \\
&\xrightarrow{W} \\
\end{align*}
\]

\[\nabla_h \mathcal{L} \bigg|_j = \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \cdot \frac{\partial h_j}{\partial z_k} \]

.
The Chain Rule

- Suppose we have a module that looks like:

```
\[ z \rightarrow h(z; W) \rightarrow h \]
```

- And we know \([\nabla_h \mathcal{L}]_j = \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \) and \(\frac{\partial h_j}{\partial z_k} \), chain rule gives:

\[
\frac{\partial \mathcal{L}(\theta, W)}{\partial z_k} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial z_k} \implies \nabla_z \mathcal{L} = J_{h,z}(\nabla_h \mathcal{L})
\]

Jacobian matrix.
The Chain Rule

• Suppose we have a module that looks like:

\[\begin{array}{c}
 \downarrow \ \\
 W \rightarrow h(z; W) \rightarrow h \\
 \downarrow \ \\
 z
\end{array} \]

• And we know \(\nabla_h \mathcal{L} \) and \(\frac{\partial h_j}{\partial z_k} \), chain rule gives:

\[
\frac{\partial \mathcal{L}(\theta, W)}{\partial z_k} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial z_k} \Rightarrow \nabla_z \mathcal{L} = J_{h,z}(\nabla_h \mathcal{L})
\]

Similarly for \(W \):

\[
\frac{\partial \mathcal{L}(\theta, W)}{\partial W_{kl}} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial W_{kl}} \Rightarrow \nabla_W \mathcal{L} = J_{h,W}(\nabla_h \mathcal{L})
\]
The Chain Rule

• Suppose we have a module that looks like:

![Diagram of module](image)

And we know \[\frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \] and \[\frac{\partial h_j}{\partial z_k} \], chain rule gives:

\[
\frac{\partial \mathcal{L}(\theta, W)}{\partial z_k} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial z_k} \implies \nabla_z \mathcal{L} = J_{h,z}(\nabla_h \mathcal{L})
\]

Similarly for \(W \):

\[
\frac{\partial \mathcal{L}(\theta, W)}{\partial W_{kl}} = \sum_j \frac{\partial \mathcal{L}(\theta, W)}{\partial h_j} \frac{\partial h_j}{\partial W_{kl}} \implies \nabla_W \mathcal{L} = J_{h,W}(\nabla_h \mathcal{L})
\]

- Given gradient with respect to output, we can build a new “module” that finds gradient with respect to inputs.
The Chain Rule

- Easy to build toolkit of known rules to compute gradients given $\delta \equiv \nabla_h \mathcal{L}$

<table>
<thead>
<tr>
<th>Function</th>
<th>Gradient w.r.t. input</th>
<th>Gradient w.r.t. parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(z)$</td>
<td>$\nabla_z \mathcal{L}$</td>
<td>$\nabla_W \mathcal{L}$</td>
</tr>
<tr>
<td>$h = Wz$</td>
<td>$W^\top \delta$</td>
<td>δz^\top</td>
</tr>
<tr>
<td>$h = \sigma(z)$</td>
<td>$\delta \odot \sigma(z) \odot (1 - \sigma(z))$</td>
<td></td>
</tr>
<tr>
<td>$h = \sqrt{Wz^2}$</td>
<td>$\left(W^\top \frac{\delta}{\delta h}\right) \odot z$</td>
<td>$\frac{\delta}{2h} (z^2)^\top$</td>
</tr>
<tr>
<td>$h = \max_j {z_j}$</td>
<td>$1{z_j = h} \delta$</td>
<td></td>
</tr>
</tbody>
</table>
The Chain Rule

- Easy to build toolkit of known rules to compute gradients given $\delta \equiv \nabla_h \mathcal{L}$

 - Automated differentiation! E.g., Theano [Bergstra et al., 2010]

<table>
<thead>
<tr>
<th>Function</th>
<th>Gradient w.r.t. input</th>
<th>Gradient w.r.t. parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(z)$</td>
<td>$\nabla_z \mathcal{L}$</td>
<td>$\nabla_W \mathcal{L}$</td>
</tr>
<tr>
<td>$h = Wz$</td>
<td>$W^\top \delta$</td>
<td>$\delta \quad z^\top$</td>
</tr>
<tr>
<td>$h = \sigma(z)$</td>
<td>$\delta \circ \sigma(z) \circ (1 - \sigma(z))$</td>
<td></td>
</tr>
<tr>
<td>$h = \sqrt{Wz^2}$</td>
<td>$(W^\top \frac{\delta}{h}) \circ z$</td>
<td>$\frac{\delta}{2h} (z^2)^\top$</td>
</tr>
<tr>
<td>$h = \max_j {z_j}$</td>
<td>$1{z_j = h} \delta$</td>
<td></td>
</tr>
</tbody>
</table>
Back-propagation

• Can re-apply chain rule to get gradients for all intermediate values and parameters.

\[
x \xrightarrow{W} \sigma(Wx) \xrightarrow{h} \sigma(\theta^\top h) \xrightarrow{f} L(\theta, W)
\]

\[
\nabla_x L \xleftarrow{J_h} \nabla_h L \xleftarrow{J_f} \nabla_f L
\]

“Backward” modules for each forward stage.
Example

• Given $\nabla_f \mathcal{L}$, compute $\nabla_W \mathcal{L}$:

Using several items from our table:

$$\nabla_h \mathcal{L} = \theta[f(1 - f)(\nabla_f \mathcal{L})]$$

$$\nabla_W \mathcal{L} = [h \odot (1 - h) \odot (\nabla_h \mathcal{L})] x^\top$$
Training Procedure

• Collect labeled training data
 – For SGD: Randomly shuffle after each epoch!
 \[\mathcal{X} = \{(x^{(i)}, y^{(i)}) : i = 1, \ldots, m\} \]

• For a batch of examples:
 – Compute gradient w.r.t. all parameters in network.
 \[\Delta_\theta := \nabla_\theta \mathcal{L}(\theta, W) \]
 \[\Delta_W := \nabla_W \mathcal{L}(\theta, W) \]
 – Make a small update to parameters.
 \[\theta := \theta - \eta_\theta \Delta_\theta \]
 \[W := W - \eta_W \Delta_W \]
 – Repeat until convergence.
Training Procedure

• Historically, this has not worked so easily.
 – Non-convex: Local minima; convergence criteria.
 – Optimization becomes difficult with many stages.
 • “Vanishing gradient problem”
 – Hard to diagnose and debug malfunctions.
Training Procedure

• Historically, this has not worked so easily.
 – Non-convex: Local minima; convergence criteria.
 – Optimization becomes difficult with many stages.
 • “Vanishing gradient problem”
 – Hard to diagnose and debug malfunctions.

• Many things turn out to matter:
 – Choice of nonlinearities.
 – Initialization of parameters.
 – Optimizer parameters: step size, schedule.
Nonlinearities

• Choice of functions inside network matters.
 – Sigmoid function turns out to be difficult.
 – Some other choices often used:

 \[
 \text{tanh}(z), \quad \text{abs}(z), \quad \text{ReLu}(z) = \max\{0, z\}
 \]

 “Rectified Linear Unit” → Increasingly popular.

 [Nair & Hinton, 2010]
Initialization

- Usually small random values.
 - Try to choose so that typical input to a neuron avoids saturating / non-differentiable areas.
 - Occasionally inspect units for saturation / blowup.
 - Larger values may give faster convergence, but worse models!

- Initialization schemes for particular units:
 - tanh units: Unif[-r, r]; sigmoid: Unif[-4r, 4r].

\[
r = \sqrt{6/(\text{fan-in} + \text{fan-out})}
\]

See [Glorot et al., AISTATS 2010]

- Later in this tutorial: unsupervised pre-training.
Optimization: Step sizes

- Choose SGD step size carefully.
 - Up to factor ~ 2 can make a difference.
- Strategies:
 - Brute-force: try many; pick one with best result.
 - Choose so that typical “update” to a weight is roughly $1/1000$ times weight magnitude. [Look at histograms.]
 - Smaller if fan-in to neurons is large.
 - Racing: pick size with best error on validation data after T steps.
 - Not always accurate if T is too small.
- Step size schedule:
 - Simple $1/t$ schedule:
 $$ \eta_t = \frac{\eta_0 \tau}{\max\{\tau, t\}} $$
 - Or: fixed step size. But if little progress is made on objective after T steps, cut step size in half.

Optimization: Momentum

• “Smooth” estimate of gradient from several steps of SGD:

\[v := \mu v + \epsilon_t \nabla \theta \mathcal{L}(\theta) \]

\[\theta := \theta + v \]

Optimization: Momentum

• “Smooth” estimate of gradient from several steps of SGD:

\[v := \mu v + \epsilon_t \nabla_{\theta} L(\theta) \]

\[\theta := \theta + v \]

• A little bit like second-order information.
 – High-curvature directions cancel out.
 – Low-curvature directions “add up” and accelerate.

Optimization: Momentum

• “Smooth” estimate of gradient from several steps of SGD:

\[v := \mu v + \epsilon_t \nabla_\theta \mathcal{L}(\theta) \]

\[\theta := \theta + v \]

– Start out with \(\mu = 0.5 \); gradually increase to 0.9, or 0.99 after learning is proceeding smoothly.
– Large momentum appears to help with hard training tasks.
– “Nesterov accelerated gradient” is similar; yields some improvement.

[Sutskever et al., ICML 2013]
Other factors

• “Weight decay” penalty can help.
 – Add small penalty for squared weight magnitude.

• For modest datasets, LBFGS or second-order methods are easier than SGD.
 – See, e.g.: Martens & Sutskever, ICML 2011.
 – Can crudely extend to mini-batch case if batches are large. [Le et al., ICML 2011]
SUPERVISED DL FOR VISION
Working with images

• Major factors:
 – Choose functional form of network to roughly match the computations we need to represent.
 • E.g., “selective” features and “invariant” features.
 – Try to exploit knowledge of images to accelerate training or improve performance.

• Generally try to avoid wiring detailed visual knowledge into system --- prefer to learn.
Local connectivity

• Neural network view of single neuron:

Extremely large number of connections.
→ More parameters to learn from.
→ Higher computational expense.
→ Turn out not to be helpful in practice.
Local connectivity

• Reduce parameters with local connections.
 – Weight vector is a spatially localized “filter”.

![Diagram showing local connectivity](image)
Local connectivity

- Sometimes think of neurons as viewing small adjacent windows.
 - Specify connectivity by the size ("receptive field" size) and spacing ("step" or "stride") of windows.
 - Typical RF size = 5 to 20
 - Typical step size = 1 pixel up to RF size.

Rows of W are sparse. Only weights connecting to inputs in the window are non-zero.
Local connectivity

- Spatial organization of filters means output features can also be organized like an image.
 - X,Y dimensions correspond to X,Y position of neuron window.
 - “Channels” are different features extracted from same spatial location. (Also called “feature maps”, or “maps”.)

1-dimensional example:
Local connectivity

- We can treat output of a layer like an image and re-use the same tricks.

1-dimensional example:

X spatial location

“Channel” or “map” index

1D input
Weight-Tying

- Even with local connections, may still have too many weights.
 - Trick: constrain some weights to be equal if we know that some parts of input should learn same kinds of features.
 - Images tend to be “stationary”: different patches tend to have similar low-level structure.
 - Constrain weights used at different spatial positions to be the equal.
Weight-Tying

- Before, could have neurons with different weights at different locations. But can reduce parameters by making them equal.

1-dimensional example:

- Sometimes called a “convolutional” network. Each unique filter is spatially convolved with the input to produce responses for each map.
 [LeCun et al., 1989; LeCun et al., 2004]
Weight-Tying

- Before, could have neurons with different weights at different locations. But can reduce parameters by making them equal.

1-dimensional example:

- Sometimes called a “convolutional” network. Each unique filter is spatially convolved with the input to produce responses for each map.
[LeCun et al., 1989; LeCun et al., 2004]
Pooling

• Functional layers designed to represent invariant features.
• Usually locally connected with specific nonlinearities.
 – Combined with convolution, corresponds to hard-wired translation invariance.
• Usually fix weights to local box or gaussian filter.
 – Easy to represent max-, average-, or 2-norm pooling.

\[h = \left(W \mathcal{Z}^a \right)^{1/a} \]

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]
Contrast Normalization

• Empirically useful to soft-normalize magnitude of groups of neurons.
 – Sometimes we subtract out the local mean first.

\[h = \frac{z}{\sqrt{W z^2 + \epsilon}} \]

[Jarrett et al., ICCV 2009]
Application: Image-Net

- System from Krizhevsky et al., NIPS 2012:
 - Convolutional neural network.
 - Max-pooling.
 - Rectified linear units (ReLu).
 - Contrast normalization.
 - Local connectivity.
Application: Image-Net

- Top result in LSVRC 2012: ~85%, Top-5 accuracy.
Application: Image-Net

- Top result in LSVRC 2012: ~85%, Top-5 accuracy.
More applications

• Segmentation: predict classes of pixels / super-pixels.

 Farabet et al., ICML 2012 →
 Ciresan et al., NIPS 2012

• Detection: combine classifiers with sliding-window architecture.
 – Economical when used with convolutional nets.

 Pierre Sermanet (2010) →

• Robotic grasping. [Lenz et al., RSS 2013]

http://www.youtube.com/watch?v=f9CuzqI1SkE
DEBUGGING TIPS

YMMV
Getting the code right

• Numerical gradient check.

• Verify that objective function decreases on a small training set.
 – Sometimes reasonable to expect 100% classifier accuracy on small datasets with big model. If you can’t reach this, why not?

• Use off-the-shelf optimizer (e.g., LBFGS) with small model and small dataset to verify that your own optimizer reaches good solutions.
Bias vs. Variance

• After training, performance on test data is poor. What is wrong?
 – Training accuracy is an upper bound on expected test accuracy.
 • If gap is small, try to improve training accuracy:
 – A bigger model. (More features!)
 – Run optimizer longer or reduce step size to try to lower objective.
 • If gap is large, try to improve generalization:
 – More data.
 – Regularization.
 – Smaller model.
UNSUPERVISED DL
Representation Learning

• In supervised learning, train “features” to accomplish top-level objective.

But what if we have too few labels to train all these parameters?
Representation Learning

• Can we train the “representation” without using top-down supervision?

Learn a “good” representation directly?
Representation Learning

• What makes a good representation?
 – Distributed: roughly, K features represents more than K types of patterns.
 • E.g., K binary features that can vary independently to represent 2^K patterns.
 – Invariant: robust to local changes of input; more abstract.
 • E.g., pooled edge features: detect edge at several locations.
 – Disentangling factors: put separate concepts (e.g., color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)
Unsupervised Feature Learning

• Train representations with unlabeled data.
 – Minimize an *unsupervised* training loss.
 • Often based on generic priors about characteristics of good features (e.g., sparsity).
 • Usually train 1 layer of features at a time.
 – Then, e.g., train supervised classifier on top.

AKA “Self-taught learning” [Raina et al., ICML 2007]
Greedy layer-wise training

• Train representations with unlabeled data.
 – Start by training bottom layer alone.
Greedy layer-wise training

• Train representations with unlabeled data.
 – When complete, train a new layer on top using inputs from below as a new training set.

Forward pass only.
UFL Example

• Simple priors for good features:
 – Reconstruction: recreate input from features.
 \[\mathcal{L}_{\text{recons}}(W_2, W_1) = \sum_{i} \|W_2 h(W_1 x^{(i)}) - x^{(i)}\|^2_2 \]
 – Sparsity: explain the input with as few features as possible.
 \[\mathcal{L}_{\text{sparse}}(W_1) = \sum_{i} \|h(W_1 x^{(i)})\|_1 \]
Sparse auto-encoder

- Train two-layer neural network by minimizing:

\[
\minimize_{W_1, W_2} \sum_i \|W_2 h(W_1 x^{(i)}) - x^{(i)} \|_2^2 + \lambda \|h(W_1 x^{(i)})\|_1
\]

\[
h(z) = \text{ReLu}(z)
\]

- Remove “decoder” and use learned features (h).

[Ranzato et al., NIPS 2006]
Sparse auto-encoder

• Train two-layer neural network by minimizing:

\[
\minimize_{W_1, W_2} \sum_i \|W_2 h(W_1 x^{(i)}) - x^{(i)}\|^2_2 + \lambda \|h(W_1 x^{(i)})\|_1
\]

\[h(z) = \text{ReLU}(z)\]

• Remove “decoder” and use learned features (h).

[Ranzato et al., NIPS 2006]
What features are learned?

• Applied to image patches, well-known result:

- Sparse auto-encoder
 [Ranzato et al., 2007]

- Sparse coding
 [Olshausen & Field, 1996]

- Sparse RBM
 [Lee et al., 2007]
Pre-processing

• Unsupervised algorithms more sensitive to pre-processing.
 – Whiten your data. E.g., ZCA whitening:
 \[[V, D] := \text{eig}(\text{cov}(X)) \]
 \[\hat{x}^{(i)} := V (D + I \epsilon)^{-1/2} V^\top (x^{(i)} - \text{mean}(X)) \]
 – Contrast normalization often useful.
 \[\hat{x} = \frac{x}{\sqrt{W x^2 + \epsilon}} \]
 – Do these before unsupervised learning at each layer.

[See, e.g., Coates et al., AISTATS 2011; Code at www.stanford.edu/~acoates/]
Group-sparsity

• Simple priors for good features:
 – Group-sparsity:

\[
\mathcal{L}_{\text{group-sparse}}(W_1) = \sum_i \sqrt{V[h(W_1x^{(i)})^2]}
\]

– V chosen to have a “neighborhood” structure. Typically in 2D grid.

\[
V_{ij} = \begin{cases}
1 & \text{if neuron } i \text{ adjacent to } j. \\
0 & \text{otherwise}
\end{cases}
\]

Hyvärinen et al., Neural Comp. 2001
Ranzato et al., NIPS 2006
Kavukcuoglu et al., CVPR 2009
Garrigues & Olshausen, NIPS 2010
What features are learned?

• Applied to image patches:
 – Pool over adjacent neurons to create invariant features.
 – These are *learned* invariances without video.

Predictive Sparse Decomposition
[Kavukcuoglu et al., CVPR 2009]

Works with auto-encoders too.
[See, e.g., Le et al. NIPS 2011]
High-level features?

• Quite difficult to learn 2 or 3 levels of features that perform better than 1 level on supervised tasks.
 – Increasingly abstract features, but unclear how much abstraction to allow or what information to leave out.
Unsupervised Pre-training

• Use as initialization for supervised learning!
 – Features may not be perfect for task, but probably a good starting point.
 – AKA “supervised fine-tuning”.

• Procedure:
 – Train each layer of features greedily unsupervised.
 – Add supervised classifier on top.
 – Optimize entire network with back-propagation.

➤ Major impetus for renewed interest in deep learning.
[Hinton et al., Neural Comp. 2006]
[Bengio et al., NIPS 2006]
Unsupervised Pre-training

- Pre-training not always useful --- but sometimes gives better results than random initialization.

Results from [Le et al., ICML 2011]:

<table>
<thead>
<tr>
<th>Image-Net Version</th>
<th>9M images, 10K classes</th>
<th>14M images, 22K classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without pre-training</td>
<td>16.1%</td>
<td>13.6%</td>
</tr>
<tr>
<td>With pre-training</td>
<td>19.2%</td>
<td>15.8%</td>
</tr>
</tbody>
</table>

Notes: exact classification (not top-5). Random guessing = 0.01%.

See also [Erhan et al., JMLR 2010]
High-level features

• Recent work [Le et al., 2012; Coates et al., 2012] suggests high-level features can learn non-trivial concepts.
 – E.g., able to find single features that respond strongly to cats, faces:
Other Unsupervised Criteria

• Neural networks with other unsupervised training criteria.
 – Denoising, in-painting. [Vincent et al., 2008]
 – “Contraction” [Rifai et al., ICML 2011].
 – Temporal coherence [Zou et al., NIPS 2012]
 [Mobahi et al., ICML 2009]
RBMs

• Restricted Boltzmann Machine
 – Similar to auto-encoder, but probabilistic.
 – Bipartite, binary MRF.
 – Pretraining of RBMs used to initialize “deep belief network” [Hinton et al., 2006] and “deep boltzmann machine” [Salakhutdinov & Hinton, AISTATS 2009].

– Intractable
 • Gibbs sampling.
 • Train with contrastive divergence [Hinton, Neural Comp. 2002]
Sparse Coding

• Another class of models frequently used in UFL
 – Neuron responses are free variables.

\[
\text{minimize}_{W,h} \sum_i \|W h^{(i)} - x^{(i)}\|^2 + \lambda \|h^{(i)}\|_1
\]

[Olshausen & Field, 1996]

– Solve by alternating optimization over \(W\) and responses \(h\).

– Like sparse auto-encoder, but “encoder” to compute \(h\) is now a convex optimization algorithm.
 • Can replace encoder with a deep neural network. [Gregor & LeCun, ICML 2010]
 • Highly optimized implementations [Mairal, JMLR 2010]
Summary

• Supervised deep-learning
 – Practical and highly successful in practice. A general-purpose extension to existing ML.
 – Optimization, initialization, architecture matter!

• Unsupervised deep-learning
 – Pre-training often useful in practice.
 – Difficult to train many layers of features without labels.
 – Some evidence that useful high-level patterns are captured by top-level features.
Resources

Tutorials

Stanford Deep Learning tutorial:
http://ufldl.stanford.edu/wiki

Deep Learning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial
References

Overviews:

Yoshua Bengio,
“Practical Recommendations for Gradient-Based Training of Deep Architectures”

Yoshua Bengio & Yann LeCun,
“Scaling Learning Algorithms towards AI”

Yoshua Bengio, Aaron Courville & Pascal Vincent,
“Representation Learning: A Review and New Perspectives”

Software:

Theano GPU library: http://deeplearning.net/software/theano
SPAMS toolkit: http://spams-devel.gforge.inria.fr/