Sparse-Coded Features for Image Retrieval

Tiezheng Ge Qifa Ke Jian Sun
University of Science and Technology of China Microsoft Bing Microsoft Research Asia
Problem Statement

- Retrieve images representing the same object/scene
Previous Work

• Applying local feature

 - Bag of Visual Word (BoW) [Sivic & Zisserman 03]
 - Large (hierarchical) vocabularies [Nister & Stewenius 03]
 - Hamming embed [Jegou et al 08]
 - Geometry preserving [Zhang et al 11]
 - Query expansion [Chum et al 07, Arandjelovic & Zisserman 12]

 - Aggregation based method
 - VLAD [Jegou et al 10, Arandjelovic & Zisserman 13]
 - Fisher Kernel [Perronnin et al 07, 08, 10, Douze et al 11]
Previous Work

- Aggregation formulation: **Coding & Pooling**

 - Local descriptor \(x \) → Coding → Mapped Vector \(g(x) \) → Pooling → Representation Vector \(G(X) \)

- Try more coding method!
Sparse coding for image search

• For image classification:
 ScSPM [Yang et al 09] LLC [Wang et al 10]

• Formulation:

 \[
 \min_u |x - uV|^2_2 + \lambda |u|_1
 \]
 s.t. \(u \succeq 0\)

 Encoding: \(g(x) = u\)

 Pooling: \text{max pooling}
Sparse coding for image search

• Slightly differs from classification:
 - Interest/key points, not dense sampled ones.
 - No SPM (shift and rotation)
Sparse coding for image search

- Active
Sparse coding for image search

- **Active**

 \[
 x_1 \quad g(x_1) = [0.1 \quad 0 \quad 0.5]
 \]
 \[
 x_2 \quad g(x_2) = [0.3 \quad 0.6 \quad 0.2]
 \]
 \[
 x_3 \quad g(x_3) = [0 \quad 0.4 \quad 0]
 \]
Sparse coding for image search

- Active
 \[x_1 \quad g(x_1) = [0.1 \quad 0 \quad 0.5] \]
 \[x_2 \quad g(x_2) = [0.3 \quad 0.6 \quad 0.2] \]
 \[x_3 \quad g(x_3) = [0 \quad 0.4 \quad 0] \]

Pooling \(G(X) = [0.3 \quad 0.6 \quad 0.5] \)
Sparse coding for image search

- Active
 \[x_1 \ g(x_1) = [0.1 \ 0 \ 0.5] \]
 \[x_2 \ g(x_2) = [0.3 \ 0.6 \ 0.2] \]
 \[x_3 \ g(x_3) = [0 \ 0.4 \ 0] \]

\[G(X) = [0.3 \ 0.6 \ 0.5] \]

\[x_1, x_2 \text{ are active} \]

\[G(x) \text{ depends solely on } x_1, x_2 \]

Active points:
- \(x_1 \)
- \(x_2 \)
- \(x_3 \)
Sparse coding for image search

• Active

\[
\begin{align*}
 x_1 \ g(x_1) &= [0.1 \ 0 \ 0.5] \\
 x_2 \ g(x_2) &= [0.3 \ 0.6 \ 0.2] \\
 x_3 \ g(x_3) &= [0 \ 0.4 \ 0] \\
\end{align*}
\]

Pooling \(G(X) = [0.3 \ 0.6 \ 0.5] \)

\(x_1, x_2 \) are active

G(x) depends solely on \(x_1, x_2 \)

Active points

\(x_1 \)

\(x_2 \)
Sparse coding for image search

- Co-active

\[x_1 \cdot g(x_1) = [0.1 \quad 0 \quad 0.5] \]
Sparse coding for image search

- Co-active

\[x_1 \ g(x_1) = [0.1 \ 0 \ 0.5] \]
\[y_1 \ g(y_1) = [0.2 \ 0.1 \ 0.6] \]
Sparse coding for image search

• Co-active

\[x_1 \ g(x_1) = [0.1 \ 0 \ 0.5] \]
\[y_1 \ g(y_1) = [0.2 \ 0.1 \ 0.6] \]

\(x_1, y_1 \) are co-active

Should be true active pair
Sparse coding for image search

• Co-active

\[x_1 \ g(x_1) = [0.1 \ 0 \ 0.5] \]
\[y_1 \ g(y_1) = [0.2 \ 0.1 \ 0.6] \]

\[x_1, y_1 \text{ are co-active} \]

Should be true active pair

\[x_1 \]
\[y_1 \]
Sparse coding for image search
Sparse coding for image search

- Most descriptors are active
Sparse coding for image search

- Most descriptors are active
- Many correct corresponding pairs!
Sparse coding for image search

- Most descriptors are active
- Many correct corresponding pairs!
- Sparse coding is a feature matcher
Sparse coding for image search

- Another example:
Multiple feature
Multiple feature

Feature 1 → Coding & Pooling → Vector 1
Multiple feature

Feature 1 → Coding & Pooling → Vector 1

Feature 2
Multiple feature

Feature 1 → Vector 1

Coding & Pooling

Feature 2 → Vector 2

Coding & Pooling
Multiple feature

Feature 1

Coding & Pooling

Vector 1

Coding & Pooling

Vector 2

Concatenate

Vector
Multiple feature

- Feature 1
 - Coding & Pooling
 - Vector 1

- Feature 2
 - Coding & Pooling
 - Vector 2

 Concatenate

 Vector
 PCA
 Compact Vector
Multiple feature

- Do not hurt memory & computation efficiency
Exploit feature combination:
- Detector: Harris corner, LOG (Laplacian of Gaussian)
- Descriptor: SIFT, DAISY
- Best configuration: Harris-DAISY(HD) + LOG-SIFT(LS)
Sparse-coded micro feature

- Color features
- Inspired by bag-of-colors (BOC) [Wengert et al. 11]

Dense sampling → CIE-Lab color → N*N color patch → Micro feature → N * N * 3 Dim
Sparse-coded micro feature

• Active points
Sparse-coded micro feature

- Active points

Focus on distinctive points
Sparse-coded micro feature

- Active points
Sparse-coded micro feature

- Active points

Focus on distinctive points
patches in smooth region
SC is a filter!
Single feature comparison

- Compare SC framework with VLAD and Fisher Kernel using the same local feature --- Harris-DAISY(HD, 104Dim)
- Datasets: INREA Holidays(mAP) & UKB(score/4)

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Dim</th>
<th>Holidays(mAP)</th>
<th>UKB(score/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>->128</td>
</tr>
<tr>
<td>Fisher(HD)</td>
<td>6656</td>
<td>0.566</td>
<td>0.530</td>
</tr>
<tr>
<td>VLAD(HD)</td>
<td>6656</td>
<td>0.559</td>
<td>0.527</td>
</tr>
<tr>
<td>SC(HD)</td>
<td>5000</td>
<td>0.599</td>
<td>0.525</td>
</tr>
</tbody>
</table>
Multiple features

- Adding more features
- HD – Harris-Daisy LS – LOG-SIFT Micro – Micro feature

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Dim</th>
<th>Holidays(mAP)</th>
<th>UKB(score/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>->128</td>
</tr>
<tr>
<td>SC(HD)</td>
<td>5000</td>
<td>0.599</td>
<td>0.525</td>
</tr>
<tr>
<td>SC(HD+LS)</td>
<td>10000</td>
<td>0.664</td>
<td>0.599</td>
</tr>
<tr>
<td>SC(HD+LS+Micro)</td>
<td>11024</td>
<td>0.767</td>
<td>0.727</td>
</tr>
</tbody>
</table>
Multiple features

- Adding more features
- HD – Harris-Daisy LS – LOG-SIFT Micro – Micro feature

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Dim</th>
<th>Holidays(mAP)</th>
<th>UKB(score/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>->128</td>
<td></td>
</tr>
<tr>
<td>SC(HD)</td>
<td>5000</td>
<td>0.599</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.525</td>
<td>3.29</td>
</tr>
<tr>
<td>SC(HD+LS)</td>
<td>10000</td>
<td>0.664</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.599</td>
<td>3.45</td>
</tr>
<tr>
<td>SC(HD+LS+Micro)</td>
<td>11024</td>
<td>0.767</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.727</td>
<td>3.67</td>
</tr>
</tbody>
</table>
Scalability study

- Holidays + 4M images from *Flickr*.
Scalability study

- Holidays + 4M images from *Flickr*.
Scalability study

- Holidays + 4M images from *Flickr*.
Scalability study

- Holidays + 4M images from Flickr.
Conclusion

• Our work:
 - Is based on local feature aggregation
 - Applies sparse coding
 - Utilize multiple features
 - Designs novel “Micro feature”
Thank you!