Dropout Training as Adaptive Regularization

Stefan Wager, Sida Wang, and Percy Liang
Stanford University

Advances in Neural Information Processing Systems
December 6, 2013
Dropout acts as a label-independent regularizer.

- Dropout training solves:

\[
\hat{\beta}_{DROPOUT} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} \mathbb{E} \left[\ell \left(\beta; \tilde{x}^{(i)}, y^{(i)} \right) \right] \right\},
\]

where \(\tilde{x}_j^{(i)} = \begin{cases} 0 & \text{with prob. } \delta \\ x_j^{(i)}/(1 - \delta) & \text{with prob. } 1 - \delta \end{cases} \)

- For generalized linear models (GLMs), this is equivalent to using a label-independent adaptive regularizer

\[
\hat{\beta}_{DROPOUT} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} \ell \left(\beta; x^{(i)}, y^{(i)} \right) + R(\beta; x_i) \right\},
\]

where \(R(\cdot) \) is the dropout regularizer.
The shape of the dropout regularizer

(a) L_2 regularization

(b) Dropout regularization

- For logistic regression, dropout favors confident predictions.
- Dropout is related to adaptive online learning schemes such as AdaGrad.
Semi-supervised dropout

- The dropout regularizer $R(\cdot)$ depends on features x but not on labels y, so we can use unlabeled data to improve $R(\cdot)$.
- Semi-supervised dropout improves on previous state-of-the-art results on the IMDB sentiment classification dataset of Maas et al. (2011).