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Abstract

We study learning curves for Gaussian process regression which characterise per-
formance in terms of the Bayes error averaged over datasets of a given size. Whilst
learning curves are in general very difficult to calculate we show that for discrete
input domains, where similarity between input points is characterised in terms of a
graph, accurate predictions can be obtained. These should in fact become exact for
large graphs drawn from a broad range of random graph ensembles with arbitrary
degree distributions where each input (node) is connected only to a finite number
of others. Our approach is based on translating the appropriate belief propagation
equations to the graph ensemble. We demonstrate the accuracy of the predictions
for Poisson (Erdos-Renyi) and regular random graphs, and discuss when and why
previous approximations of the learning curve fail.

1 Introduction

Learning curves are a convenient way of characterising the performance that can be achieved with
machine learning algorithms: they give the generalisation error ε as a function of the number of
training examples n, averaged over all datasets of size n under appropriate assumptions about the
data-generating process. Such a characterization is particularly useful in the case of non-parametric
approaches such as Gaussian processes (GPs) [1], where in contrast to the parametric case [2] there
is no generic classification of possible learning curves.

Here we study GP regression, where a real-valued output function f(x) is to be learned. Qualita-
tively, GP learning curves are relatively well understood for the scenario where the inputs x come
from a continuous space, typically Rn [3, 4, 5, 6, 7, 8, 9, 10, 11]. However, except in the limit of
large n, or for very specific situations like one-dimensional inputs [3], the learning curves cannot
be calculated exactly. Here we show that this is possible for discrete input spaces where similarity
between input points can be represented as a graph whose edges connect similar points, inspired by
work at last year’s NIPS that developed simple approximations for this scenario [12].

There are many potential application domains where learning of such functions of discrete inputs x
could be relevant, for example if x is a research paper whose impact f(x) we would like to predict;
the similarity graph could then be constructed on the basis of shared authorship. Or we could be
trying to learn functions on generic symbol strings x, for example ones characterizing protein amino
acid sequences, and the similarity graph would have edges between homologous molecules.

Our aim is to find out how well GP regression can perform in such discrete domains; alternative
inference approaches including online algorithms [13, 14, 15, 16] would also be interesting to study
but are outside the scope of the present paper. We focus on large sparse random graphs, where each
node is connected only to a finite number of other nodes even though the overall number of nodes
in the graph is large.
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In section 2 we give a brief overview of GP regression and summarize the approximation for the
learning curves used in previous work [4, 8, 12]. Section 3 then explains our method: following a
similar approach in [17] for random matrix spectra, we write down the belief propagation equations
for a given graph in the form normally used in the cavity method [18] of statistical mechanics, and
then translate them to graphs drawn from a random graph ensemble. Because for sparse random
graphs typical loop lengths grow with the graph size, the belief propagation equations and hence our
learning curve predictions should become exact for large graphs.

Section 4 compares the predictions with simulation results for Poisson (Erdos-Renyi) graphs, where
each edge is independently present with some small probability, and random regular graphs, where
each node has the same degree (number of neighbours). The new predictions are indeed very ac-
curate, and substantially more so than previous approximations. In section 4.1 we discuss in more
detail the relationship between our work and these approximations to rationalize where the strongest
deviations occur. Finally, section 5 summarises our results and discusses open questions and direc-
tions for future work.

2 GP regression and approximate learning curves

Gaussian processes have become a well known machine learning technique used in a wide range of
areas, see e.g. [19, 20, 21]. One reason for their success is the intuitive way that a priori information
about the function to be learned is transparently encoded by the covariance and mean functions of
the GP.

A GP is a Gaussian prior over functions f with a fixed covariance function (kernel) C and mean
function (assumed to be 0)1. In the simplest case the likelihood is also Gaussian, i.e. we assume
that the outputs yµ in a set of examples D = {(i1, y1, . . . , (iN , yN )} are obtained by corrupting the
clean function values fiµ with i.i.d. Gaussian noise of variance σ2. Then the posterior distribution
over functions is, from Bayes’ theorem P (f |D) ∝ P (f)P (D|f):

P (f |D) ∝ exp(−1

2
fTC−1f − 1

2σ2

N∑
µ=1

(yµ − fiµ)2) (1)

We consider GPs in discrete spaces, where each input is a node of a graph and can therefore be given
a discrete label i as anticipated above; fi is the associated function value. If the graph has V nodes,
the covariance function is then just a V × V matrix.

A number of possible forms for covariance functions on graphs have been proposed. We will focus
on the relatively flexible random walk covariance function [22],

C =
1

κ
((1− a−1)I + a−1D−1/2AD−1/2)p a ≥ 2, p ≥ 0 (2)

Here A is the adjacency matrix of the graph, withAij = 1 if nodes i and j are connected by an edge,
and 0 otherwise; D = diag{d1, . . . , dV } is a diagonal matrix containing the degrees of the nodes in
the graph (di =

∑
j Aij). One can easily see the relationship to a random walk: the unnormalised

covariance function is a (symmetrised) p-step ‘lazy’ random walk, with probability a−1 of moving
to a neighbouring node at each step. The prior thus assumes that function values up to a distance p
along the graph are correlated with each other, to an extent determined by the hyperparameter a−1.
The constant κ will be chosen throughout to normalise C so that 1

V

∑
i Cii = 1, which corresponds

to setting the average prior variance of the function values to unity.

Our main concern in this paper are GP learning curves in discrete input spaces. The learning curve
describes how the average generalisation error (mean square error) ε decreases with the number of
examples N . Qualitatively, it gives the rate at which one would expect a GP to learn a function in
the average case. The generalisation error on an ensemble of graphs is given by

ε = 〈 1

V

∑
i

(f̄i − fi)2〉f |D,D,graphs (3)

1We focus on the zero prior mean case throughout. All results translate fairly straightforwardly to the
non-zero mean case, but this complicates the algebra without leading to substantially new insights.
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where f is the uncorrupted (clean) teacher or target function, and f̄ is the posterior mean function
of the GP which gives the function values we predict on the basis of the data D. It is worth noting
that the generalisation error for a graph ensemble contains an additional average over this ensem-
ble. As is standard in the study of learning curves we have assumed a matched scenario where the
posterior P (f |D) for our predictions is also the posterior over the underlying target functions. The
generalisation error is then the Bayes error, and is given by the average posterior variance.

Sollich [4] and later Opper [7] with a more general replica approach showed that for continuous
input spaces a reasonable approximation to the learning curve could be expressed as the solution of
the following self-consistent equation:

ε = g

(
N

ε+ σ2

)
, g(h) =

V∑
α=1

(λ−1α + h)−1 (4)

Here the λα are appropriately defined eigenvalues of the covariance function. The motivation for
our study is work presented at NIPS2009 [12], which demonstrated that this approximation can
also be used in discrete domains, but is not always accurate. Studying random walk and diffusion
kernels [22] on random regular graphs, the authors showed that although the eigenvalue-based ap-
proximation is reasonable for both the large and the small N limits, it fails to accurately predict the
learning curve in the important transition region between these two extremes, drastically so for low
noise variances σ2.

In the next section we will show that this shortcoming can be overcome by the cavity method (belief
propagation) which explicitly takes advantage of the sparse structure of the underlying graph. This
will give an accurate approximation for the learning curves in a broad range of ensembles of sparse
random graphs.

3 Accurate predictions with the cavity method

The cavity method was developed in statistical physics [18] but is closely related to belief propa-
gation; for a good overview of these and other mean field methods, see e.g. [23]. We begin with
equation (3). Because we only need the posterior variance in the matched case considered here, we
can shift f so that f̄ = 0; fi is then the deviation of the function value at node i from the posterior
mean. In this notation, the Bayes error is

ε = 〈 1

V

∑
i

∫
dff2i P (f |D)〉D,graphs (5)

where P (f |D) now contains in the exponent only the terms from (1) that are quadratic in f .

To set up the cavity method, we begin by defining a generating or partition function Z, for a fixed
graph, as

Z =

∫
df exp(−1

2
fTC−1f − 1

2σ2

∑
µ

f2iµ −
λ

2

∑
i

f2i ) (6)

An auxiliary parameter λ has been added here to allow us to represent the Bayes error as
ε = − limλ→0(2/V ) ∂

∂λ 〈logZ〉D,graphs. The dependence on the datasetD appears in Z only through
the sum over µ. It will be more useful to write this as a sum over all nodes: if ni counts the
number of examples seen at node i, then

∑
µ f

2
iµ

=
∑
i nif

2
i . Even with this replacement, the

partition function in equation (6) is not yet suitable for an application of the cavity method since
the inverse covariance function cannot be written explicitly and generates interaction terms fifj
between nodes that can be far away from each other along the graph. To eliminate the inverse of
the covariance function we therefore perform a Fourier transform on the first term in the exponent,
exp(− 1

2f
TC−1f) ∝

∫
dh exp(− 1

2h
TCh + i

∑
i hifi). The integral over f then factorizes over

the fi, and one finds

Z ∝
∫
dh exp(−1

2
hTCh− 1

2
hT diag{( ni

σ2
+ λ)−1}h) (7)

Substituting the explicit form of the covariance function (2) into equation (7) we have

Z ∝
∫
dh exp(−1

2
hT

p∑
q=0

cq(D
−1/2AD−1/2)qh− 1

2
hT diag{( ni

σ2
+ λ)−1}h) (8)
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where we have written the power in equation (2) as a binomial sum and defined cq =
p!/[q!(p− q)!]a−q(1− a−1)p−q/κ.

For p > 1, equation (8) still has interactions with more than the immediate neighbours. To solve
this we introduce additional variables hq , defined recursively via hq = (D−1/2AD−1/2)hq−1

for q ≥ 1 and h0 = h. These definitions are enforced via Dirac delta-functions, each i and q ≥ 1

giving a factor δ(hqi −d
−1/2
i

∑
j Aijd

−1/2
j hq−1j ) ∝

∫
dĥqi exp[iĥqi (h

q
i −d

−1/2
i

∑
j Aijd

−1/2
j hq−1j )].

Substituting this into equation (8) gives the key advantage that now the adjacency matrix appears
only linearly in the exponent, so that we have interactions only across edges of the graph. Rescaling
the hqi to d1/2i hqi and similarly for the ĥqi , and explicitly separating off the local terms from the
interactions finally yields

Z ∝
∫ p∏

q=0

dhq
p∏
q=1

dĥq
∏
i

exp(−1

2

p∑
q=0

cqdih
0
ih
q
i −

1

2

di(h
0
i )

2

ni/σ2 + λ
+ i
∑
q=1

diĥ
q
ih
q
i )

×
∏
(ij)

exp(−i
∑
q=1

(ĥqih
q−1
j + ĥqjh

q−1
i ))

(9)

We now have the partition function of a (complex-valued) Gaussian graphical model. By differenti-
ating logZ with respect to λ, keeping track of λ-dependent prefactors not written above, one finds
that the Bayes error is,

ε = lim
λ→0

1

V

∑
i

1

ni/σ2 + λ

(
1− di〈(h0i )2〉

ni/σ2 + λ

)
(10)

and so we need the marginal distributions of the h0i . This is where the cavity method enters: for a
large random graph the structure is locally treelike, so that if node i were eliminated the correspond-
ing subgraphs (locally trees) rooted at the neighbours j ∈ N (i) of iwould become independent [17].
The resulting cavity marginals P (i)

j (hj , ĥj |D) can then be calculated iteratively within these sub-
graphs, giving the cavity update equations

P
(i)
j (hj , ĥj |D) ∝ exp(−1

2

p∑
q=0

cqdjh
0
jh
q
j −

1

2

dj(h
0
j )

2

nj/σ2 + λ
+ i

p∑
q=1

dj ĥ
q
jh
q
j)∫ ∏

k∈N (j)\i

dhkdĥk exp(−i
p∑
q=1

(ĥqjh
q−1
k + ĥqkh

q−1
j ))P

(j)
k (hk, ĥk|D)

(11)

One sees that these equations are solved self-consistently by complex-valued Gaussian distributions
with mean zero and covariance matrices V

(i)
j . By performing the Gaussian integrals in the cavity

update equations (11) explicitly, these equations then take the rather simple form

V
(i)
j = (Oj −

∑
k∈N (j)\i

XV
(j)
k X)−1 (12)

where we have defined the (2p+ 1)× (2p+ 1) matrices

Oi = di



c0+ 1
ni/σ2+λ

1
2c1 . . . 1

2cp 0 . . . 0
1
2c1 −i

...
. . .

1
2cp −i
0 −i
...

. . . 0p,p
0 −i


, X =



i

0p+1,p+1
. . .

i
0 . . . 0

i 0
. . .

... 0p,p
i 0


Finally we need to translate these equations to an ensemble of large sparse graphs. Each ensemble
is characterised by the distribution p(d) of the degrees di, with every graph that has the desired
degree distribution being assigned the same probability. Instead of individual cavity covariance
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matrices V
(i)
j , we need to consider their probability distribution W (V ) across all edges of the

graph. Picking at random an edge (i, j) of a graph, the probability that node j will have degree
dj is then p(dj)dj/d̄, because such a node has dj “chances” of being picked. (The normalisation
factor is the average degree d̄.) Using again the locally treelike structure, the incoming (to node j)
cavity covariances V (j)

k will be i.i.d. samples from W (V ). Thus a fixed point of the cavity update
equations corresponds to a fixed point of an update equation for W (V ):

W (V ) =

〈∑
d

p(d)d

d̄

∫ d−1∏
k=1

dVkW (Vk) δ(V − (O −
d−1∑
k=1

XVkX)−1)

〉
n

(13)

Because the node label is now arbitrary, we have abbreviated V
(i)
j to V , dj to d, Oj to O and V

(j)
k

to Vk. The average is over the distribution over the number of examples n ≡ nj at node j in the
dataset D. Assuming for simplicity that examples are drawn with uniform input probability across
all nodes, this distribution is simply n ∼ Poisson(ν) in the limit of largeN and V at fixed ν = N/V .

In general equation (13) – which can also be formally derived using the replica approach [24] –
cannot be solved analytically, but we can solve it numerically using a standard population dynamics
method [25]. Once we have W (V ), the Bayes error can be found from the graph ensemble version
of equation (10), which is obtained by inserting the explicit expression for 〈(h0i )2〉 in terms of the
cavity marginals of the neighbouring nodes, and replacing the average over nodes with an average
over p(d):

ε = lim
λ→0

〈∑
d

p(d)

n/σ2 + λ

(
1− d

n/σ2 + λ

∫ d∏
k=1

dVkW (Vk) (O −
d∑
k=1

XVkX)−100

)〉
n

(14)

The number of examples at the node is again to be averaged over n ∼ Poisson(ν). The subscript
“00” indicates the top left element of the matrix, which determines the variance of h0.

To be able to use equation (14), it needs to be rewritten in a form that remains explicitly non-
singular when n = 0 and λ → 0. We split off the n-dependence of the matrix inverse by writing
O −

∑d
k=1 XVkX = M + [d/(n/σ2 + λ)]e0e

T
0 , where eT0 = (1, 0, . . . , 0). The matrix inverse

appearing above can then be expressed using the Woodbury formula as

M−1 − M−1e0e
T
0 M

−1

(n/σ2 + λ)/d+ eT0 M
−1e0

(15)

To extract the (0,0)-element (top left) as required we multiply by eT0 · · · e0. After some simplifica-
tion the λ→ 0 limit can then be taken, with the result

ε =

〈∑
d

p(d)

∫ d∏
k=1

dVkW (Vk)
1

n/σ2 + d(M−1)00

〉
n

(16)

This has a simple interpretation: the cavity marginals of the neighbours provide an effective Gaus-
sian prior for each node, whose inverse variance is d(M−1)00.

The self-consistency equation (13) for W (V ) and the expression (16) for the resulting Bayes error
are our main results. They allow us to predict learning curves as a function of the number of exam-
ples per node, ν, for arbitrary degree distributions p(d) of our random graph ensemble providing
the graphs are sparse, and for arbitrary noise level σ2 and covariance function hyperparameters p
and a.

We note briefly that in graphs with isolated nodes (d = 0), one has to be slightly careful as already
in the definition of the covariance function (2) one should replace D →D+δI to avoid division by
zero, taking δ → 0 at the end. For d = 0 one then finds in the expression (16) that (M−1)00 = 1

c0δ

so that (δ + d)(M−1)00 = δ(M−1)00 = 1/c0. This is to be expected since isolated nodes each
have a separate Gaussian prior with variance c0.
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4 Results

We will begin by comparing the performance of our new cavity prediction (equation (16)) against
the eigenvalue approximation (equation (4)) from [4, 7], for random regular graphs with degree
3 (so that p(d) = δd,3). In this way we can exploit the work of [12], where the quality of the
approximation (4) for this case was studied in some detail.

Figure 1: (Left) A comparison of the cavity prediction (solid line with triangles) against the eigen-
value approximation (dashed line) for the learning curves for random regular graphs of degree 3, and
against simulation results for graphs with V = 500 nodes (solid line with circles). Random walk
kernel with p = 1, a = 2; noise level as shown. (Right) As before with p = 10, a = 2. (Bottom)
Similarly for Poisson (Erdos-Renyi) graphs with c = 3.

As can be seen in figure 1 (left) & (right) the cavity approach is accurate along the entire learning
curve, to the point where the prediction is visually almost indistinguishable from the numerical
simulation results. Importantly, the cavity approach predicts even the midsection of the learning
curve for intermediate values of ν, where the eigenvalue prediction clearly fails. The deviations
between cavity theory and the eigenvalue predictions are largest in this central part because at this
point fluctuations in the number examples seen at each node have the greatest effect. Indeed, for
much smaller ν, the dataset does not contain any examples from many of the nodes, i.e. n = 0 is
dominant and fluctuations towards larger n have low probability. For large ν, the dataset typically
contains many examples for each node and Poisson fluctuations around the average value n = ν
are small. The fluctuation effects for intermediate ν are suppressed when the noise level σ2 is large,
because then the generalisation error in the range of intermediate ν is still fairly close to its initial
value (ν = 0). But for the smaller noise levels fluctuations in the number of examples for each
node can have a large effect, and correspondingly the eigenvalue prediction becomes very poor for
intermediate ν. We discuss this further in section 4.1.

Comparing figure 1 (left) and (right), it can also be seen that unlike the eigenvalue-based approxi-
mation, the cavity prediction for the learning curve does not deteriorate as p is varied towards lower
values. Similar conclusions apply with regard to changes of a (results not shown).
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Next we consider Poisson (Erdos-Renyi) graphs, where each edge is present independently with
probability c/V [26]. This leads to a Poisson distribution of degrees, p(d) = e−ccd/d!. Figure 1
(bottom) shows the performance of our cavity prediction for this graph ensemble with c = 3 for a GP
with p = 10, a = 2, in comparison to simulation results for V = 500. The cavity prediction clearly
outperforms the eigenvalue-based approximation and again remains accurate even in the central part
of the learning curve. Taken together, the results for random regular and Poisson graphs clearly
confirm our expectation that the cavity prediction for the learning curve that we have derived should
be exact for large graphs. It is worth noting that our new cavity prediction will work for arbitrary
degree distributions and is limited only by the assumption of graph sparsity.

4.1 Why the eigenvalue approximation fails

The derivation of the eigenvalue approximation (4) by Opper in [8] gives some insight into when
and how this approximation breaks down. Opper takes equation (6) and uses the replica trick to
write 〈logZ〉D = limn→0

1
n log〈Zn〉D. The average of Zn is calculated for integer n and then

appropriately continued to n→ 0. The required nth power of equation (6) is in our case

〈Zn〉D =

∫ n∏
a=1

dfa〈exp(−1

2

∑
a

faTC−1fa − 1

2σ2

∑
i,a

ni(f
a
i )2 − λ

2

∑
i,a

(fai )2)〉D (17)

The dataset average, over ni ∼ Poisson(ν), then gives

〈Zn〉D =

∫ n∏
a=1

dfa exp(−1

2

∑
a

faTC−1fa + ν
∑
i

(e−
∑
a(f

a
i )

2/2σ2

− 1)− λ

2

∑
i,a

(fai )2) (18)

If one now wants to proceed without explicitly exploiting the sparse graph structure, one has to
approximate the exponential term in the exponent. Opper does this using a variational approximation
for the distribution of the fa, of Gaussian form, and this eventually leads to the approximation (4)
for the learning curve. This approach is evidently justified for large σ2, where a Taylor expansion
of the exponential term in (18) can be truncated after the quadratic term. For small noise levels,
on the other hand, the Gaussian variational approach clearly does not capture all the details of the
fluctuations in the numbers of examples ni. By comparison, in this paper, using the cavity method
we are able to retain the average over D explicitly, without the need to approximate the distribution
of the ni. The result of this is that the section of the learning curve where fluctuations in numbers
of examples play a large role is captured accurately, while the Gaussian variational (eigenvalue)
approach can give wildly inaccurate results there.

5 Conclusions and further work

In this paper we have studied the learning curves of GP regression on large random graphs. In a
significant advance on the work of [12], we showed that the approximations for learning curves
proposed by Sollich [4] and Opper [7] for continuous input spaces can be greatly improved upon in
the graph case, by using the cavity method. We argued that the resulting predictions should in fact
become exact in the limit of large random graphs.

Section 3 derived the learning curve approximation using the cavity method for arbitrary degree
distributions. We defined a generating function Z (equation (6)) from which the generalisation error
ε can be obtained by differentiation. We then rewrote this using Fourier transforms (equation (7)) and
introduced additional variables (equation (9)) to get Z into the required form for a cavity approach:
the partition function of a complex-valued Gaussian graphical model. By standard arguments we
then derived the cavity update equations for a fixed graph (equation (12)). Finally we generalised
from these to graph ensembles (equation (13)), taking the limit of large graph size. The resulting
prediction for the generalisation error (equation (16)) has an intuitively appealing interpretation,
where each node in the graph learns subject to an effective (and data-dependent) Gaussian prior
provided by its neighbours.

In section 4 we compared our new prediction to the eigenvalue approximation results in [12]. We
showed that our new method is far more accurate in the challenging midsection of the learning
curves than the eigenvalue version, both for random regular and Poisson graph ensembles (figure 1).
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Subsection 4.1 discusses why the older approximation, derived from a replica perspective in [7], is
inaccurate compared to the cavity method. To retain tractable averages in continuous input spaces,
it has to approximate fluctuations in the dataset of the number of examples for each node, thus
resulting in the inaccurate predictions seen in figure 1. On graphs one is able to perform this average
explicitly when calculating cavity updates and the resulting Bayes error, giving a far more accurate
prediction of the learning curves.

Although the learning curves predicted using the cavity method cover a broad range of graph en-
sembles because they apply for arbitrary p(d), there do remain some interesting types of graph
ensembles (for instance graphs with community structure) that cannot be generated by imposing
only the degree distribution. Indeed, an important assumption in the current work is that small loops
are rare whilst in community graphs, where nodes exhibit preferential attachment, there can be many
small loops. We are in the process of analysing GP learning on such graphs using the approach of
Rogers et al. [27], where community graphs are modelled as having a sparse superstructure joining
clusters of densely connected nodes.

Following previous studies [12], we have in this paper set the scale of the covariance function by
normalising the average prior covariance over all nodes. For the Poisson graph case our learning
curve simulations then show, however, that there can be large variations in the local prior variances
Cii, while from the Bayesian modelling point of view it would seem more plausible to use covariance
functions where all Cii = 1. This could be achieved by pre- and post-multiplying the random walk
covariance matrix by an appropriate diagonal matrix. We hope to study this modified covariance
function in future, and to extend the cavity prediction for the learning curves to this case.

It would also be interesting to expand our approach to model mismatch, where we assume the data-
generating process is a GP with hyperparameters that differ from those of the GP being used for
inference. This was studied for continuous input spaces in [10]; equally interesting would be a
study of mismatch with a fixed target function as analysed by Opper et al. [8]. It should further
be useful to study the case of mismatched graphs, rather than hyperparameters. This is relevant
because frequently in real world learning one will have only partial knowledge of the graph structure,
for instance in metabolic networks when not all of the pathways have been discovered, or social
networks where friendships are continuously being made and broken.

Another interesting avenue for further research would be to look at multiple output (multi-task)
GPs on graphs, to see if the work of Chai [28] can be extended to this scenario. One would hope
that, as seen with the learning curves for single output GPs in this paper, input domains defined by
graphs might allow simplifications in the analysis and provide more accurate bounds or even exact
predictions.

Finally, it would be worth extending the study of graph mismatch to the case of evolving graphs and
functions. Here spatio-temporal GP regression could be employed to predict functions changing
over time, perhaps including a model based approach as in [29] to account for the evolving graph
structure.
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[25] M. Mézard and G. Parisi. The Bethe lattice spin glass revisited. The European Physical Journal B,
20(2):217–233, 2001.
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