ONLINE LEARNING IN THE MANIFOLD OF LOW-RANK MATRICES

NIPS 2010

Uri Shalit1,2, Daphna Weinshall1, Gal Chechik2,3

1Hebrew University of Jerusalem, 2Bar Ilan University, 3Google
Matrix models in machine learning

- Similarity learning:
 \[\text{similarity}_W(p, q) = p^T W q \]
- Multitask learning:
 \[y_{pred} = W \cdot x \]

- Low-rank matrix models:
 Natural regularization and significant speedup and memory savings

- Online learning approach for tackling large scale problems
Low-rank Manifold and Online Learning

- Enforcing low-rank constraints is computationally hard.
- Low rank matrices form a manifold.
- Online learning: follow a path within the manifold. The ideal path follows geodesics down the gradient.
- Projected gradient approximates the ideal path, but requires SVD every step.
- Approximations to the geodesic are called retractions. We formulate a new retraction that is computed more efficiently.
ALGORITHM

LORETA: L0w-rank RETraction Algorithm

- Has *linear* runtime complexity
- Fully exploits the memory and computational complexity savings of low-rank models
- Achieves superior accuracy in two tasks: large scale document similarity and image labeling

More details at poster W23