ONLINE LEARNING IN THE MANIFOLD OF LOW-RANK MATRICES

NIPS 2010

Uri Shalit^{1,2}, Daphna Weinshall¹, Gal Chechik^{2,3} ¹Hebrew University of Jerusalem, ²Bar Ilan University, ³Google

MATRIX MODELS IN MACHINE LEARNING

• Similarity learning: $similarity_W(p,q) = p^T W q$ Multitask learning: $y_{pred} = W \cdot x$

- Low-rank matrix models: Natural regularization and significant speedup and memory savings
- Online learning approach for tackling large scale problems

less similar

more similar

LOW-RANK MANIFOLD AND ONLINE LEARNING

- Enforcing low-rank constraints is computationally hard
- Low rank matrices form a *manifold*
- Online learning: follow a path within the manifold. The ideal path follows geodesics down the gradient
- **Projected gradient** approximates the ideal path, but requires SVD every step.
- Approximations to the geodesic are called *retractions*. We formulate a new retraction that is computed more efficiently

Algorithm

LORETA: LOw-rank RETraction Algorithm

- Has *linear* runtime complexity
- Fully exploits the memory and computational complexity savings of low-rank models
- Achieves superior accuracy in two tasks: large scale document similarity and image labeling

More details at poster **W23**

