For clustering problems with submodular objective functions, we introduce the minimum average cost criterion.

The proposed algorithm
- does not require # of clusters in advance
- computes an optimal # of clusters and an optimal partition in polynomial time
- uses the theory of intersecting submodular functions

Keywords
clustering, submodular functions, combinatorial optimization
• \(V = \{1, \ldots, n\} \) is a finite set of data points

• A function \(f \) defined on \(2^V = \{S : S \subseteq V\} \) is **submodular** if
 \[
 f(S) + f(T) \geq f(S \cup T) + f(S \cap T), \quad \forall S, T \subseteq V
 \]

 ➢ A generalization of cut functions, entropy functions, etc.

Clustering problem with submodular objective function

[\text{Narasimhan-Jojic-Bilmes, NIPS 2005}]

Given set \(V \), integer \(k(\leq n) \), and submodular function \(f \), find a \(k \)-partition of \(V \), \(\{S_1, \ldots, S_k\} \) that minimizes \(\sum_{i=1}^{k} f(S_i) \)

In the case of a network, \(\sum_{i} f(S_i) = 2 \times \#(\text{red edge}) \)

\((V \) is a set of nodes, and \(f \) is a cut function)
Optimal k-clustering problem [Narasimhan et al., NIPS 2005]

\[
\begin{align*}
\min & \sum_{i=1}^{k} f(S_i) \\
\text{s. t.} & \{S_1, \ldots, S_k\} \text{ is a } k\text{-partition of } V
\end{align*}
\]

- k (# of clusters) should be computed via some method
- NP-hard

Minimum Average Cost (MAC) clustering [This work]

\[
\begin{align*}
\min & \sum_{S \in \mathcal{P}} f(S) / (|\mathcal{P}| - \beta) \\
\text{s. t.} & \mathcal{P} \text{ is a partition of } V \\
& |\mathcal{P}| > \beta
\end{align*}
\]

where $0 \leq \beta < n$

- averaged objective function
- $k = |\mathcal{P}|$ and a partition \mathcal{P} are determined at the same time
- Solvable in poly time
- competitive with other methods

If β is small, \mathcal{P} is coarse. If β is big, \mathcal{P} is fine.
Theorem [This work]. There is an algorithm that computes all the β-MAC clusterings in polynomial time in total.

Observation. Suppose that a partition P is a β-MAC clustering for some β, and let $k = |P|$. Then, P is a k-optimal clustering.

The information about MAC clusterings gives a portion of the information about optimal k-clusterings.

(remember that an optimal k-clustering problem is NP-hard)

Example

In this case, our algorithm computes optimal k-clusterings for $k = 1, 3, & 4$

For more information, please visit Poster T26