Getting lost in space
Large sample analysis of the resistance/commute distance

Ulrike von Luxburg, Agnes Radl and Matthias Hein

Speaker: Matthias Hein, Saarland University
Idea of similarity graphs in machine learning:

- connect similar points - build global structure from local structure

Commute distance on graphs:

- expected number of steps for the random walk on the graph to go from one vertex to another vertex and back.

Usage: ranking, clustering, semi-supervised learning, network analysis

Intuition: commute distance captures cluster structure in the data!
Limit of the commute distance

Random geometric graphs:

- samples are drawn i.i.d. from a probability measure in \mathbb{R}^d
- k-nearest neighbor or ε-neighborhood graph

Sketch of Main Result:

Commutte distance C_{ij} is meaningless for large random geometric graphs:

$$C_{ij} \approx \frac{1}{d_i} + \frac{1}{d_j} \quad \text{for } i \neq j,$$

where $d_i = \sum_{s=1}^{n} w_{is}$ is the degree of vertex i.

Implications:

- depends only on local connectivity - no global structure incorporated
- all points have the same nearest neighbor: the point with maximal degree

Result generalizes to other (random) graph types
Is everything lost?

USPS: 10-nearest neighbor graph

Left: Original commute distance, Right: Amplified commute distance

At the poster:
- detailed limit results + discussion of more general graph types
- amplified commute distance and associated kernel
- comparison of different distances for semi-supervised learning on USPS