Missing Features: examples as sets of (FeatureId, FeatureValue) pairs

- **Missing Features**

\[
x = \begin{array}{c|cccccccc}
\text{Feature} & A & B & C & D & E & F & G \\
\text{Value} & 0.15 & ? & ? & ? & 0.28 & 0.77 & ? \\
\end{array}
\]

- **Prior Art**: Examples are vectors

 - impute
 - integrate out
 - example-specific subspace

- **This Work**: Examples are sets of (FeatureId, FeatureValue) pairs

\[
x = \{(A, 0.15), (E, 0.28), (F, 0.77)\}\]
FSE classifies sets of (FeatureId, FeatureValue) pairs

1. p embeds each pair (FeatureId, FeatureValue) into a latent space

2. Φ summarizes the latent vectors into one vector (e.g. average or max)

3. V classifies this vector
• flexibility: \(p \) allows mixing continuous/discrete features encoding prior knowledge about the features...

• outperform recent alternatives for feat. missing at train & test time
 train time only
 test time only

• FSE allows prediction before all features are computed
 multi-instance learning
 active feature selection

See you at Poster # 13