Inferring exon junction expression from RNA-seq data

Boyko Kakaradov and Brendan Frey
Probabilistic and Statistical Inference group
University of Toronto
Motivation

• Goal: estimate transcript expression
 – absolute counts
 – relative (alternative splicing)

• RNA Sequencing
 – discrete expression counts
 – noisy & biased
Junction Mapping

Input Data

MLCB 2010
Example junction coverage

![Bar graph showing junction coverage across different position with an average line.

MLCB 2010]
Simple Model

\[X_{ptj} \sim \text{Poisson}(\bar{X}_{tj}) \]

where \(\bar{X}_{tj} = \frac{1}{P} \sum_{p'=1}^{P} X_{p'tj} \)

\[p(X = k; \bar{X}) = \frac{\bar{X}^k e^{-\bar{X}}}{k!} \]

Assumes uniform read coverage.
T*J shared position parameters. \(\bar{X}_{tj} \)
Junction Coverage is not uniform
Sparse (73% zeros)
Variable (SD = 3 x MEAN)
Tissue / Position Biases
Factored Model

\[\alpha_{t,j} \quad \text{Junction} \quad j = 1, \ldots, 2553 \]

\[\beta_{pt} \quad \rightarrow \quad X_{pt,j} \]

\[\text{Position} \quad p = 1, \ldots, 40 \]

\[\text{Tissue} \quad t = 1, \ldots, 16 \]
Factored Model

\[X_{ptj} \sim \text{Poisson}(\beta_{pt} \alpha_{tj}) \]

\(\alpha_{tj} \)
\(j = 1, \ldots, 2553 \)

\(\beta_{pt} \)

\(X_{ptj} \)

\(p = 1, \ldots, 40 \)

\(t = 1, \ldots, 16 \)
Factored Model: MLE

\[L = \log p(\alpha, \beta | X) = \log \prod_{pt,j} p(\beta_{pt}, \alpha_{tj} | X_{ptj}) \]

Coordinate Ascent -- not identifiable

\[\alpha_{tj}^{(i+1)} = \frac{\sum_p X_{ptj}}{\sum_p \beta_{pt}^{(i+1)}} \quad \beta_{pt}^{(i+1)} = \frac{\sum_j X_{ptj}}{\sum_j \alpha_{tj}^{(i+1)}} \]

Closed Form -- if we constrain

\[\sum_p \beta_{pt} = 1 \]

\[\alpha_{tj}^* = \frac{\sum_p X_{ptj}}{\sum_p \beta_{pt}} = \sum_p X_{ptj} \]

\[\beta_{pt}^* = \frac{\sum_j X_{ptj}}{\sum_j \alpha_{tj} - \mu} = \frac{\sum_j X_{ptj}}{\sum_{p'} X_{p'tj}} \]

MLCB 2010
Learned MLE Parameters

α_{tj}

β_{pt}
Factored Model

\[X_{ptj} \sim \text{Poisson}(\beta_{pt} \alpha_{tj}) \]

\(\alpha_{tj} \)

\(j = 1, \ldots, 2553 \)

\(\beta_{pt} \)

\(X_{ptj} \)

\(p = 1, \ldots, 40 \)

\(t = 1, \ldots, 16 \)

MLCB 2010
Latent Factored Model

\[X_{ptj} \sim \text{Poisson}(\beta_{pt}\alpha_{tj}) \]

\[\alpha_{tj} \]

Junction
\[j = 1, \ldots, 2553 \]

\[S_{ptj} \]

Position
\[p = 1, \ldots, 40 \]

\[X_{ptj} \]

\[\tilde{X}_{ptj} \]

Tissue
\[t = 1, \ldots, 16 \]
Latent Factored Model

\[X_{ptj} \sim \text{Poisson}(\beta_{pt} \alpha_{tj}) \]

\[S_{ptj} \sim \text{Bern}(\pi_{ptj}) \]

\[\tilde{X}_{ptj} = X_{ptj} + S \cdot \text{Geometric}(\lambda) \]

Junction
\[j = 1, \ldots, 2553 \]

Position
\[p = 1, \ldots, 40 \]

Tissue
\[t = 1, \ldots, 16 \]
Latent Factored Model: EM

E-step

\[q(X_{ptj}, S_{ptj}) = \frac{1}{Z_{ptj}} p(X_{ptj} | \alpha_{tj}, \beta_{pt}) p(\tilde{X}_{ptj} | X_{ptj}, S_{ptj}) p(S_{ptj}) \]

\[Z_{ptj} = \sum_{S_{ptj} \in \{0, 1\}} \sum_{\tilde{X}} p(S_{ptj}) \sum_{X=0} p(X_{ptj} | \alpha_{tj}, \beta_{pt}) p(\tilde{X}_{ptj} | X_{ptj}, S_{ptj}) \]

M-step

\[\alpha_{tj}^{(i+1)} = \frac{\sum_{p} E_q X_{ptj}}{\sum_{p} \beta_{pt}^{(i)}} \]

\[\beta_{pt}^{(i+1)} = \frac{\sum_{j} E_q X_{ptj}}{\sum_{p'j} E_q X_{p'jtj}} \]

\[E_q X = \sum_{s=0}^{\tilde{X}} \sum_{x=0}^{\tilde{X}} x q(x, s) \]

\[\pi_{ptj} = \sum_{x=0}^{\tilde{X}} q(x, S = 1) \]
Learned MLE Parameters

α_{tj}

β_{pt}
Evaluation

• Model Fit
 – Log-likelihood
 – Reconstruction error

\[
\frac{\| X - \hat{X} \|_1}{\| X \|_1} = \frac{\sum_{ptj} |X_{ptj} - \hat{X}_{ptj}|}{\sum_{ptj} |X_{ptj}|}
\]

• Apply to Alternative Splicing (AS)
 \(j_a = \text{alternative junction} \quad j_c = \text{constitutive junction} \)

\[
\log \left(\frac{\hat{X}_{ptj_a}}{\hat{X}_{ptj_c}} \right) \quad \log \left(\frac{X_{ptj_a}}{X_{ptj_c}} \right)
\]
AS Estimate: Latent Model
Summary

• Junction Coverage
 – not uniform, sparse
 – tissue/position bias

• Poisson Models
 – mean = variance
 – Iterative & closed form

• Latent Model
 – outlier model
 – EM algorithm

• Results
 – model fit
 – alternative splicing