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Overview 

 Motivation of information theory for optimization

 Approximation capacity of a cost function

 Examples
 Binary symmetric channel
 Cluster validation
 Role based access control
 Robust SVD 

 Conclusion and outlook
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What is the central challenge of pattern 
recognition? 

 I) Finding the “right” model? II) Validating a model?

 Hypothesis: Validation of pattern recognition
models is the fundamental challenge!

Algorithmic search for PR models should prefer 
noise tolerant and expressive models over brittle, 
simplistic ones! (stability stability vsvs informativenessinformativeness) 

Information theory enables us to measure the 
context sensitive information content of models! 
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Information Theory & Pattern Recognition

 IT-Components
 Code vectors ( {strings}

= hypothesis class

 Noisy channel

 Decoder: minimize 
Hamming distance

 Criterion for error free 

communication 

=>=> mutual informationmutual information

 Pattern Recognition elements
 Approximation sets (

hypothesis class

 Noisy optimization problem

 Decoding by approximate 
optimization of test instance

 model validation based on 

guaranteed approximations 

=> mutual informationmutual information
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Examples of hypothesis classes

 Partitions or clusterings:
compactness/connectivity costs

 Trees or dendrograms:    
partitions with ultrametricity; 
Tree depth? # leaves?       

 Graphical models: 
structured probability       
models; # nodes/edges?

The hypothesis class is much smaller than the data space!
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Code problems define approximation sets

 IT: Space of strings is 

partitioned by code vectors

 PR: Hypothesis class is 

partitioned by code problems

×
×

× ×

×
×

×

× Approximation set 
with minimizer

×

× ×
×

×

×

×

×

×× ×

×
×

×

×
× × ××

×
× ××

×

× ×
× ×

X Code vectors ×
×

×



Sunday, December 12, 2010 Joachim M. Buhmann NIPS DISCML Workshop, Whistler 7

Pattern recognition as optimization
 Given: data in data (input) space
 Goal: Learn structure from data, i.e., interpret 

data relative to a hypothesis class
 Hypothesis class    with hypotheses (solutions)

 Cost function to define a partial order on

C

R : C × X → R≥0
(c,X) 7→ R(c,X)

X ∈ X X

c : X → K
X 7→ c(X)

(e.g., Bn or {1, . . . , k}n)

C
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Symmetries of the Learning Problem

 Assume (!) that the cost function R is equivariant
under the transformations

 Minimizer:

 Approximation set:  Approximation set:  

c⊥(X) = argmin
c∈C

R(c,X)

c ∈ Cγ(X) ≡
©
c : R (c,X) ≤ R

¡
c⊥,X

¢
+ γ

ª

Σ = {σ : R(c,X) = R(σ ◦ c, σ ◦X)}

c⊥(σ ◦X) = σ ◦ c⊥(X)
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How to generate code problems?

1. Combinatorial optimization problems: 
permutation of combinatorial components, 
e.g., vertices in graphs

2. Localization problems: shifts of data

3. Orientation problems (PCA, SVD): rotations

1

2
3

4

5

5

9
7

4

1

1

2
3

4

5

5

3
2

4

1



Sunday, December 12, 2010 Joachim M. Buhmann NIPS DISCML Workshop, Whistler 10

Ex.: Graph Cut - Clustering in two groups

 Graph representation: vertices denote objects
edges express (dis)similarities

 Hypothesis class: all cuts of a graph

1

2
3

4
6

5
9

7
8

1

2
3

4
6

5
9

7
8

1 1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1 1 1 1

1 1 1
1 1 1 1

1 1 1
1 1 1 1



Sunday, December 12, 2010 Joachim M. Buhmann NIPS DISCML Workshop, Whistler 11

1 1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1 1 1 1

1 1 1
1 1 1 1

1 1 1
1 1 1 1

Code problem generation for Graph Cut

graph cut 
test problem
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Coding with Graph Cut approximation sets

sender

problem generator PG

receiver

define a set of 
code problems

R(·,X(1))R(·,X(1))
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Communication by approximation sets

sender

problem generator

receiver

s

estimate the 
coding error

1. Sender sends a 
permutation index s to 
problem generator.

2. Problem generator sends a 
new problem with permuted 
indices to receiver without 
revealing s.

3. Receiver identifies the 
permutation by 
comparing approximation 
sets.

c⊥(X̃(2))

X̃(2) = σs ◦X(2)

R(·, σs ◦X(2)), s.t.

X(1),X(2) ∼ P (X)
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Communication Process

 Receiver has to compare sets of hypotheses 
of training instance (code problem) with 

approximate clusterings of the test data.

 Define a mapping

 Decoding by overlap maximization

Cγ(X(1))

Cγ(X(2))

ψ : C(X(1))→ C(X(2))

σ̂ = argmax
σ

¯̄̄
ψ ◦ Cγ(σ ◦X(1)) ∩ Cγ(X̃(2))

¯̄̄
¡
X̃(2) := σs ◦X(2)

¢
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Error Events and Approximation Capacity

 Sender selects transformation

 Joint approximation sets

 Error events 

|∆Cj | ≥ |∆Cs| for 1 ≤ j ≤ 2nρ, j 6= s

∆Cj = ψ ◦ Cγ(σj ◦X(1)) ∩ Cγ(σs ◦X(2))

for 1 ≤ j ≤ 2nρ, j 6= s

σs ⇒ Cγ(σs ◦X(1))
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Error Probability
 Conditional error

Assume random transformations

The random transformation statistically decouples the two 

approximation sets in 

P (σ̂ 6= σs|σs) = P (max
j 6=s

|∆Cj | > |∆Cs|
¯̄
σs)

≤
X
j 6=s

P
¡
|∆Cj | > |∆Cs|

¯̄
σs
¢

σ ∈ Σ

Union bound

≤ 2nρP
¡
|∆C 6=s| > |∆Cs|

¯̄
σs
¢

= 2nρEX(1,2)Eσ6=s
£
I{|∆C6=s|≥|∆Cs|}

¯̄
σs
¤

∆C6=s
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Bounding of error

a) Bound on indicator function

b) Averaging over random transformation

c) Definition of mutual information 

I{x≥a} ≤ x/a

Eσ 6=s
£
I{|∆C6=s|≥|∆Cs|}

¤ (a)

≤ 1

|{σ6=s}|
X
{σ 6=s}

|∆C6=s|
|∆Cs|

(b)

≤ |Cγ(X(1))||Cγ(X(2))|
|{σ6=s}||∆Cs|

(c)
= exp (−nIγ(σ6=s, σ̂))



Sunday, December 12, 2010 Joachim M. Buhmann NIPS DISCML Workshop, Whistler 18

Condition of vanishing total error
yields

 Rate is bounded by mutual information

 Lower bound: generalize Fano’s inequality to 
ASC (work in progress)

lim
n→∞

P (σ̂ 6= σs|σs) = 0

ρ log 2 <
1

n
log

|{σ 6=s}||∆Cs|
|C(1)γ ||C(2)γ |

=
1

n

Ã
log

|{σ 6=s}|
|C(1)γ |

+ log
|C(2)|
|C(2)γ |

− log |C
(2)|

|∆Cs|

!
≡ Iγ(σ 6=s, σ̂)
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Model Selection by Maximization of  
Approximation Capacity 

 Optimize the communication channel w.r.t. 
approximation quality , topology and metric 
of solution space, cost function R(.,.), transfer 
function 

sender

problem generator

receiver

s
R(·, σs ◦X(2)), s.t.

X(1),X(2) ∼ P (X)
Communication channel

σ̂
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Ex.: Binary Coding
 Hypothesis class: set of binary strings

 Costs:
 Mutual information:

 ASC for Hamming distance yield capacity of 
binary symmetric channel!

R(s, ξ(1)) =
Pn
i=1 I{si 6=ξ(1)i }³

δ = 1
n |{i : ξ

(1)
i 6= ξ

(2)
i }|

´

ξ(1) = (ξ
(1)
1 , ξ

(1)
2 , . . . , ξ(1)n ), ξ(2) ∈ {−1, 1}n

Iβ = ln 2 + (1 − δ) ln cosh β − ln(cosh β + 1)
(∗)
= ln 2 + (1 − δ) ln(1 − δ) + δ ln δ

if (∗) dIβdβ = 0 holds
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2d Mixture Model Estimation 

Generalization error Approximation Capacity

Experimental Setting: 
2 source Gaussians, 

n=10000, d=2, =2

E
£
R(c(1),X(2)

¤
/n
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Gibbs sampling with 4 clusters

Empirical Generalization error Approximation Capacity

Experimental Setting: 
n=500, d=100, 2 source Gaussians
ordered phase, up to 4 estimated Gaussians

E
£
R(c(1),X(2)

¤
/n
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High Dimensional Density Estimation
Phase Diagram: 
mixture of 2 Gaussians
n=500; d=100, 500, 3000; := n/d

Overlap: Approximation Capacityr = u−10 h∆μ,∆μ0i

Barkai, Sompolinsky, Phys Rev E 50:1766, 1994.
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Denoising Binary Matrices by rank-k
approximation

Boolean matrix with 40% random entries
continuous rank‐k approximation

X5 = U5 S5V5

Rounding as 
approximation
g(Xk) = round (Xk)

X = USV



Sunday, December 12, 2010 Joachim M. Buhmann NIPS DISCML Workshop, Whistler 25

Difference to ground‐truth vs. kApproximation capacity vs. k

Maximum of approximation capacity
selects optimal rank k
 Integrate over variations of the signal matrix U. 

rank k rank k
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Iβ(σj , σ̂) =
1

n
log

|{σj}||∆Cβ(X(1),X(2)) |
|Cβ(X(1))||Cβ(X(2))|
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Role-Based Access Control
 Given: Binary user

permission matrix

 Discretional
Access-Control: 
Direct Assignments of users to permissions

 Role-Based Access Control (RBAC): Permissions are
granted via roles
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Role-Mining for RBAC

 Role-Mining: Given a user-permission
assignment matrix X, find a set of roles U and 
assignments Z such that

 Multi Assignment
Clustering: generative 
approach including
noise model,
inference with DA
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Synthetic Data: Parameter Accuracy vs. 
Approximation Capacity

MAC: More accurate estimators for centroids, it
yields higher approximation capacity than SAC.
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Real-World Data: Prediction Error vs. 
Approximation Capacity

 Generalization: Can roles predict permissions of new
users?

1. Use few permissions (20%) 
to determine role set

2. Predict hidden/missing

permissions (80%).

 Centroids with maximal 

capacity yield minimal 

generalization error
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Conclusion
 Quantization: Noise quantizes mathematical 

structures (hypothesis classes) => symbols
 These symbols can be used for coding!
 Optimal error free coding scheme determines 

approximation capacity of a model class.
Bounds for robust optimization. 
Quantization of hypothesis class measures 

structure specific information in data. 
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Future Work

 Generalization: replace approximation sets 
based on cost functions by smoothed outputs of 
algorithms (“smoothed generalization”)

 Model reduction in dynamical systems: 
quantize sets of ODEs or PDEs (systems biology)

 Relate statistical complexity, i.e. the 
approximation capacity, to algorithmic or 
computational complexity.
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Philosophical speculations
 We experience a paradigm shift from model 

driven reasoning to algorithm dominated 
reasoning (Bernard Chazelle “The Algorithm: Idiom of Modern Science”)

=> model validation more essential than modeling 
since modeling can be algorithmically formulated 
as exploration of model space.
 Ceterum censeo: The coupling of statistical 

complexity and algorithmic complexity should 
be reconsidered in the light of statistical learning 
theory and information theory. 




