

Information Theoretic Model Validation by Approximate Optimization

Joachim M. Buhmann

Computer Science Department, ETH Zurich

Sunday, 12 December 2010

- Motivation of information theory for optimization
- Approximation capacity of a cost function
- Examples
 - Binary symmetric channel
 - Cluster validation
 - Role based access control
 - Robust SVD
- Conclusion and outlook

What is the central challenge of pattern recognition?

- I) Finding the "right" model? II) Validating a model?
- Hypothesis: Validation of pattern recognition models is the fundamental challenge!
- ⇒Algorithmic search for PR models should prefer noise tolerant and expressive models over brittle, simplistic ones! (stability vs informativeness)
- Information theory enables us to measure the context sensitive information content of models!

Information Theory & Pattern Recognition

IT-Components

dgenössische Technische Hochschule Zürich wiss Federal Institute of Technology Zurich

- Code vectors ⊊ {strings}
 - = hypothesis class
- Noisy channel
- Decoder: minimize
 Hamming distance
- Criterion for error free communication

=> mutual information

- Pattern Recognition elements
 - Approximation sets ⊊
 hypothesis class
 - Noisy optimization problem
 - Decoding by approximate optimization of test instance
- model validation based on guaranteed approximations
 mutual information

 Partitions of sis sterings: compactness/colossis tivity costs
 Trees or dendrogram. Uch partitions with ultrametricity. The depth? # leaves?
 '-'s: **Examples of hypothesis classes**

- IT: Space of strings is partitioned by code vectors
 - PR: Hypothesis class is partitioned by code problems

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Pattern recognition as optimization

- Given: data $\mathbf{X} \in \mathcal{X}$ in data (input) space \mathcal{X}
- Goal: Learn structure from data, i.e., interpret data relative to a hypothesis class
- Hypothesis class C with hypotheses (solutions)

$$egin{array}{rcl} c & \colon \mathcal{X} & o & \mathbb{K} & ext{(e.g., } \mathbb{B}^n ext{ or } \{1, \dots, k\}^n) \ & \mathbf{X} & \mapsto & c(\mathbf{X}) \end{array}$$

• Cost function to define a partial order on ${\cal C}$

Symmetries of the Learning Problem

 Assume (!) that the cost function R is equivariant under the transformations

$$\Sigma = \{ \sigma : R(c, \mathbf{X}) = R(\sigma \circ c, \sigma \circ \mathbf{X}) \}$$

- Minimizer: $c^{\perp}(\mathbf{X}) = \arg\min_{c \in \mathcal{C}} R(c, \mathbf{X})$ $c^{\perp}(\sigma \circ \mathbf{X}) = \sigma \circ c^{\perp}(\mathbf{X})$
- Approximation set:

$$c \in \mathcal{C}_{\gamma}(\mathbf{X}) \equiv \left\{ c : R\left(c, \mathbf{X}\right) \leq R\left(c^{\perp}, \mathbf{X}\right) + \gamma \right\}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

How to generate code problems?

- Combinatorial optimization problems: permutation of combinatorial components, e.g., vertices in graphs
- 2. Localization problems: **shifts** of data
- 3. Orientation problems (PCA, SVD): rotations

Ex.: Graph Cut - Clustering in two groups

Graph representation: vertices denote objects

edges express (dis)similarities

Hypothesis class: a

all **cuts** of a graph

Code problem generation for Graph Cut

graph cut code problems

graph cut test problem

No of the list of the list of the

Coding with Graph Cut approximation sets

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

明明的目的目的

Communication by approximation sets

Sunday, December 12, 2010

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Joachim M. Buhmann

- Receiver has to compare sets of hypotheses $C_{\gamma}(\mathbf{X}^{(1)})$ of training instance (code problem) with approximate clusterings $C_{\gamma}(\mathbf{X}^{(2)})$ of the test data.
- Define a mapping $\psi : \mathcal{C}(\mathbf{X}^{(1)}) \to \mathcal{C}(\mathbf{X}^{(2)})$
- Decoding by overlap maximization $(\tilde{\mathbf{X}}^{(2)} := \sigma_s \circ \mathbf{X}^{(2)})$

$$\hat{\sigma} = \arg \max_{\sigma} \left| \psi \circ \mathcal{C}_{\gamma}(\sigma \circ \mathbf{X}^{(1)}) \cap \mathcal{C}_{\gamma}(\tilde{\mathbf{X}}^{(2)}) \right|$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Error Events and Approximation Capacity

- Sender selects transformation $\sigma_s \Rightarrow C_{\gamma}(\sigma_s \circ \mathbf{X}^{(1)})$
- Joint approximation sets

$$\Delta \mathcal{C}_j = \psi \circ \mathcal{C}_\gamma(\sigma_j \circ \mathbf{X}^{(1)}) \cap \mathcal{C}_\gamma(\sigma_s \circ \mathbf{X}^{(2)})$$

for $1 \le j \le 2^{n\rho}, \ j \ne s$

Error events :

$$|\Delta C_j| \ge |\Delta C_s|$$
 for $1 \le j \le 2^{n\rho}, \ j \ne s$

UN RELEASED IN REAL

Error Probability

• Conditional error $P(\hat{\sigma} \neq \sigma_s | \sigma_s) = P(\max_{j \neq s} |\Delta C_j| > |\Delta C_s| | \sigma_s)$ Union bound $\leq \sum_{j \neq s} P(|\Delta C_j| > |\Delta C_s| | \sigma_s)$

Assume random transformations $\sigma \in \Sigma$

$$\leq 2^{n\rho} P\left(\left| \Delta C_{\neq s} \right| > \left| \Delta C_{s} \right| \left| \sigma_{s} \right) \right. \\ = 2^{n\rho} \mathbb{E}_{\mathbf{X}^{(1,2)}} \mathbb{E}_{\sigma_{\neq s}} \left[\mathbb{I}_{\left\{ \left| \Delta C_{\neq s} \right| \ge \left| \Delta C_{s} \right| \right\}} \left| \sigma_{s} \right] \right]$$

The random transformation statistically decouples the two approximation sets in $\Delta C_{\neq s}$

見ており目ののの

Bounding of error

$$\mathbb{E}_{\sigma_{\neq s}} \left[\mathbb{I}_{\{|\Delta \mathcal{C}_{\neq s}| \ge |\Delta \mathcal{C}_{s}|\}} \right]$$

$$\stackrel{a)}{\leq} \quad \frac{1}{|\{\sigma_{\neq s}\}|} \sum_{\{\sigma_{\neq s}\}} \frac{|\Delta C_{\neq s}|}{|\Delta C_{s}|}$$

$$\stackrel{b)}{\leq} \quad \frac{|C_{\gamma}(\mathbf{X}^{(1)})||C_{\gamma}(\mathbf{X}^{(2)})|}{|\{\sigma_{\neq s}\}||\Delta C_{s}|}$$

$$\stackrel{c)}{=} \quad \exp\left(-n\mathcal{I}_{\gamma}(\sigma_{\neq s},\hat{\sigma})\right)$$

- a) Bound on indicator function $\mathbb{I}_{\{x \ge a\}} \le x/a$
- b) Averaging over random transformation
- c) Definition of mutual information

Sunday, December 12, 2010

Condition of vanishing total error

$$\lim_{n \to \infty} P(\hat{\sigma} \neq \sigma_s | \sigma_s) = 0 \quad \text{yields}$$

Rate is bounded by mutual information

$$\rho \log 2 < \frac{1}{n} \log \frac{|\{\sigma_{\neq s}\}| |\Delta \mathcal{C}_s|}{|\mathcal{C}_{\gamma}^{(1)}| |\mathcal{C}_{\gamma}^{(2)}|}$$

$$= \frac{1}{n} \left(\log \frac{|\{\sigma_{\neq s}\}|}{|\mathcal{C}_{\gamma}^{(1)}|} + \log \frac{|\mathcal{C}^{(2)}|}{|\mathcal{C}_{\gamma}^{(2)}|} - \log \frac{|\mathcal{C}^{(2)}|}{|\Delta \mathcal{C}_s|} \right)$$

$$\equiv \mathcal{I}_{\gamma}(\sigma_{\neq s}, \hat{\sigma})$$

 Lower bound: generalize Fano's inequality to ASC (work in progress)

UI 111111111000

Model Selection by Maximization of Approximation Capacity

 Optimize the communication channel w.r.t. approximation quality γ (β), topology and metric of solution space, cost function *R*(.,.), transfer function ψ

Sunday, December 12, 2010

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ex.: Binary Coding

• Hypothesis class: set of binary strings $\xi^{(1)} = (\xi_1^{(1)}, \xi_2^{(1)}, \dots, \xi_n^{(1)}), \xi^{(2)} \in \{-1, 1\}^n$

- Costs: $R(s,\xi^{(1)}) = \sum_{i=1}^{n} \mathbb{I}_{\{s_i \neq \xi_i^{(1)}\}}$
- Mutual information: $\left(\delta = \frac{1}{n} |\{i : \xi_i^{(1)} \neq \xi_i^{(2)}\}|\right)$

$$\begin{aligned} \mathcal{I}_{\beta} &= \ln 2 + (1 - \delta) \ln \cosh \beta - \ln(\cosh \beta + 1) \\ \stackrel{(*)}{=} &\ln 2 + (1 - \delta) \ln(1 - \delta) + \delta \ln \delta \\ &\text{if} \quad (*) \frac{d\mathcal{I}_{\beta}}{d\beta} = 0 \text{ holds} \end{aligned}$$

 ASC for Hamming distance yield capacity of binary symmetric channel!

Sunday, December 12, 2010

地的时间的同时

Gibbs sampling with 4 clusters

Experimental Setting:

n=500, d=100, 2 source Gaussians ordered phase, up to 4 estimated Gaussians

Sunday, December 12, 2010

n=500; d=100, 500, 3000; α := n/d

RANDOM

Denoising Binary Matrices by rank-k approximation continuous rank-k approximation

Sunday, December 12, 2010

Joachim M. Buhmann

明明明明明明

Maximum of approximation capacity selects optimal rank *k*

Integrate over variations of the signal matrix U.

$$\mathcal{I}_{\beta}(\sigma_{j}, \hat{\sigma}) = \frac{1}{n} \log \frac{|\{\sigma_{j}\}| |\Delta \mathcal{C}_{\beta}(\mathbf{X}^{(1)}, \mathbf{X}^{(2)})|}{|\mathcal{C}_{\beta}(\mathbf{X}^{(1)})| |\mathcal{C}_{\beta}(\mathbf{X}^{(2)})|}$$

Sunday, December 12, 2010

enössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Role-Based Access Control

- Given: Binary user teach students
 permission matrix change group web-page
- spend >5000\$

 Discretional

 supervise master thesis

 Access-Control:

 use coffee machine

期時期期期間

Direct Assignments of users to permissions

 Role-Based Access Control (RBAC): Permissions are granted via roles

Role-Mining for RBAC

- Role-Mining: Given a user-permission assignment matrix X, find a set of roles U and assignments Z such that
 - $\mathbf{X} \approx \mathbf{U} \otimes \mathbf{Z}$
- Multi Assignment Clustering: generative approach including noise model, inference with DA

Synthetic Data: Parameter Accuracy vs. Approximation Capacity

MAC: More accurate estimators for centroids, it yields higher approximation capacity than SAC.

dgenössische Technische Hochschule Zürich viss Federal Institute of Technology Zurich

Real-World Data: Prediction Error vs. Approximation Capacity

- Generalization: Can roles predict permissions of new users? 3.5
 - Use few permissions (20%) 1.
- Juen/missing Juen/

Sunday, December 12, 2010

össische Technische Hochschule Zürich iss Federal Institute of Technology Zurich

Conclusion

- Quantization: Noise quantizes mathematical structures (hypothesis classes) => symbols
- These symbols can be used for coding!
- Optimal error free coding scheme determines approximation capacity of a model class.
- \Rightarrow Bounds for robust optimization.
- ⇒Quantization of hypothesis class measures structure specific information in data.

Future Work

- Generalization: replace approximation sets based on cost functions by smoothed outputs of algorithms ("smoothed generalization")
- Model reduction in dynamical systems: quantize sets of ODEs or PDEs (systems biology)
- Relate statistical complexity, i.e. the approximation capacity, to algorithmic or computational complexity.

Philosophical speculations

- We experience a paradigm shift from model driven reasoning to algorithm dominated reasoning (Bernard Chazelle "The Algorithm: Idiom of Modern Science")
- => model validation more essential than modeling since modeling can be algorithmically formulated as exploration of model space.
- Ceterum censeo: The coupling of statistical complexity and algorithmic complexity should be reconsidered in the light of statistical learning theory and information theory.