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Overview 

 Motivation of information theory for optimization

 Approximation capacity of a cost function

 Examples
 Binary symmetric channel
 Cluster validation
 Role based access control
 Robust SVD 

 Conclusion and outlook
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What is the central challenge of pattern 
recognition? 

 I) Finding the “right” model? II) Validating a model?

 Hypothesis: Validation of pattern recognition
models is the fundamental challenge!

Algorithmic search for PR models should prefer 
noise tolerant and expressive models over brittle, 
simplistic ones! (stability stability vsvs informativenessinformativeness) 

Information theory enables us to measure the 
context sensitive information content of models! 
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Information Theory & Pattern Recognition

 IT-Components
 Code vectors ( {strings}

= hypothesis class

 Noisy channel

 Decoder: minimize 
Hamming distance

 Criterion for error free 

communication 

=>=> mutual informationmutual information

 Pattern Recognition elements
 Approximation sets (

hypothesis class

 Noisy optimization problem

 Decoding by approximate 
optimization of test instance

 model validation based on 

guaranteed approximations 

=> mutual informationmutual information
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Examples of hypothesis classes

 Partitions or clusterings:
compactness/connectivity costs

 Trees or dendrograms:    
partitions with ultrametricity; 
Tree depth? # leaves?       

 Graphical models: 
structured probability       
models; # nodes/edges?

The hypothesis class is much smaller than the data space!
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Code problems define approximation sets

 IT: Space of strings is 

partitioned by code vectors

 PR: Hypothesis class is 

partitioned by code problems

×
×

× ×

×
×

×

× Approximation set 
with minimizer

×

× ×
×

×

×

×

×

×× ×

×
×

×

×
× × ××

×
× ××

×

× ×
× ×

X Code vectors ×
×

×



Sunday, December 12, 2010 Joachim M. Buhmann NIPS DISCML Workshop, Whistler 7

Pattern recognition as optimization
 Given: data in data (input) space
 Goal: Learn structure from data, i.e., interpret 

data relative to a hypothesis class
 Hypothesis class    with hypotheses (solutions)

 Cost function to define a partial order on

C

R : C × X → R≥0
(c,X) 7→ R(c,X)

X ∈ X X

c : X → K
X 7→ c(X)

(e.g., Bn or {1, . . . , k}n)

C
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Symmetries of the Learning Problem

 Assume (!) that the cost function R is equivariant
under the transformations

 Minimizer:

 Approximation set:  Approximation set:  

c⊥(X) = argmin
c∈C

R(c,X)

c ∈ Cγ(X) ≡
©
c : R (c,X) ≤ R

¡
c⊥,X

¢
+ γ

ª

Σ = {σ : R(c,X) = R(σ ◦ c, σ ◦X)}

c⊥(σ ◦X) = σ ◦ c⊥(X)
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How to generate code problems?

1. Combinatorial optimization problems: 
permutation of combinatorial components, 
e.g., vertices in graphs

2. Localization problems: shifts of data

3. Orientation problems (PCA, SVD): rotations
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Ex.: Graph Cut - Clustering in two groups

 Graph representation: vertices denote objects
edges express (dis)similarities

 Hypothesis class: all cuts of a graph
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Code problem generation for Graph Cut

graph cut 
test problem
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Coding with Graph Cut approximation sets

sender

problem generator PG

receiver

define a set of 
code problems

R(·,X(1))R(·,X(1))
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Communication by approximation sets

sender

problem generator

receiver

s

estimate the 
coding error

1. Sender sends a 
permutation index s to 
problem generator.

2. Problem generator sends a 
new problem with permuted 
indices to receiver without 
revealing s.

3. Receiver identifies the 
permutation by 
comparing approximation 
sets.

c⊥(X̃(2))

X̃(2) = σs ◦X(2)

R(·, σs ◦X(2)), s.t.

X(1),X(2) ∼ P (X)
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Communication Process

 Receiver has to compare sets of hypotheses 
of training instance (code problem) with 

approximate clusterings of the test data.

 Define a mapping

 Decoding by overlap maximization

Cγ(X(1))

Cγ(X(2))

ψ : C(X(1))→ C(X(2))

σ̂ = argmax
σ

¯̄̄
ψ ◦ Cγ(σ ◦X(1)) ∩ Cγ(X̃(2))

¯̄̄
¡
X̃(2) := σs ◦X(2)

¢
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Error Events and Approximation Capacity

 Sender selects transformation

 Joint approximation sets

 Error events 

|∆Cj | ≥ |∆Cs| for 1 ≤ j ≤ 2nρ, j 6= s

∆Cj = ψ ◦ Cγ(σj ◦X(1)) ∩ Cγ(σs ◦X(2))

for 1 ≤ j ≤ 2nρ, j 6= s

σs ⇒ Cγ(σs ◦X(1))
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Error Probability
 Conditional error

Assume random transformations

The random transformation statistically decouples the two 

approximation sets in 

P (σ̂ 6= σs|σs) = P (max
j 6=s

|∆Cj | > |∆Cs|
¯̄
σs)

≤
X
j 6=s

P
¡
|∆Cj | > |∆Cs|

¯̄
σs
¢

σ ∈ Σ

Union bound

≤ 2nρP
¡
|∆C 6=s| > |∆Cs|

¯̄
σs
¢

= 2nρEX(1,2)Eσ6=s
£
I{|∆C6=s|≥|∆Cs|}

¯̄
σs
¤

∆C6=s
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Bounding of error

a) Bound on indicator function

b) Averaging over random transformation

c) Definition of mutual information 

I{x≥a} ≤ x/a

Eσ 6=s
£
I{|∆C6=s|≥|∆Cs|}

¤ (a)

≤ 1

|{σ6=s}|
X
{σ 6=s}

|∆C6=s|
|∆Cs|

(b)

≤ |Cγ(X(1))||Cγ(X(2))|
|{σ6=s}||∆Cs|

(c)
= exp (−nIγ(σ6=s, σ̂))
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Condition of vanishing total error
yields

 Rate is bounded by mutual information

 Lower bound: generalize Fano’s inequality to 
ASC (work in progress)

lim
n→∞

P (σ̂ 6= σs|σs) = 0

ρ log 2 <
1

n
log

|{σ 6=s}||∆Cs|
|C(1)γ ||C(2)γ |

=
1

n

Ã
log

|{σ 6=s}|
|C(1)γ |

+ log
|C(2)|
|C(2)γ |

− log |C
(2)|

|∆Cs|

!
≡ Iγ(σ 6=s, σ̂)
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Model Selection by Maximization of  
Approximation Capacity 

 Optimize the communication channel w.r.t. 
approximation quality , topology and metric 
of solution space, cost function R(.,.), transfer 
function 

sender

problem generator

receiver

s
R(·, σs ◦X(2)), s.t.

X(1),X(2) ∼ P (X)
Communication channel

σ̂
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Ex.: Binary Coding
 Hypothesis class: set of binary strings

 Costs:
 Mutual information:

 ASC for Hamming distance yield capacity of 
binary symmetric channel!

R(s, ξ(1)) =
Pn
i=1 I{si 6=ξ(1)i }³

δ = 1
n |{i : ξ

(1)
i 6= ξ

(2)
i }|

´

ξ(1) = (ξ
(1)
1 , ξ

(1)
2 , . . . , ξ(1)n ), ξ(2) ∈ {−1, 1}n

Iβ = ln 2 + (1 − δ) ln cosh β − ln(cosh β + 1)
(∗)
= ln 2 + (1 − δ) ln(1 − δ) + δ ln δ

if (∗) dIβdβ = 0 holds
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2d Mixture Model Estimation 

Generalization error Approximation Capacity

Experimental Setting: 
2 source Gaussians, 

n=10000, d=2, =2

E
£
R(c(1),X(2)

¤
/n
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Gibbs sampling with 4 clusters

Empirical Generalization error Approximation Capacity

Experimental Setting: 
n=500, d=100, 2 source Gaussians
ordered phase, up to 4 estimated Gaussians

E
£
R(c(1),X(2)

¤
/n
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High Dimensional Density Estimation
Phase Diagram: 
mixture of 2 Gaussians
n=500; d=100, 500, 3000; := n/d

Overlap: Approximation Capacityr = u−10 h∆μ,∆μ0i

Barkai, Sompolinsky, Phys Rev E 50:1766, 1994.
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Denoising Binary Matrices by rank-k
approximation

Boolean matrix with 40% random entries
continuous rank‐k approximation

X5 = U5 S5V5

Rounding as 
approximation
g(Xk) = round (Xk)

X = USV
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Difference to ground‐truth vs. kApproximation capacity vs. k

Maximum of approximation capacity
selects optimal rank k
 Integrate over variations of the signal matrix U. 

rank k rank k
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log
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|Cβ(X(1))||Cβ(X(2))|
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Role-Based Access Control
 Given: Binary user

permission matrix

 Discretional
Access-Control: 
Direct Assignments of users to permissions

 Role-Based Access Control (RBAC): Permissions are
granted via roles
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Role-Mining for RBAC

 Role-Mining: Given a user-permission
assignment matrix X, find a set of roles U and 
assignments Z such that

 Multi Assignment
Clustering: generative 
approach including
noise model,
inference with DA
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Synthetic Data: Parameter Accuracy vs. 
Approximation Capacity

MAC: More accurate estimators for centroids, it
yields higher approximation capacity than SAC.
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Real-World Data: Prediction Error vs. 
Approximation Capacity

 Generalization: Can roles predict permissions of new
users?

1. Use few permissions (20%) 
to determine role set

2. Predict hidden/missing

permissions (80%).

 Centroids with maximal 

capacity yield minimal 

generalization error
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Conclusion
 Quantization: Noise quantizes mathematical 

structures (hypothesis classes) => symbols
 These symbols can be used for coding!
 Optimal error free coding scheme determines 

approximation capacity of a model class.
Bounds for robust optimization. 
Quantization of hypothesis class measures 

structure specific information in data. 
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Future Work

 Generalization: replace approximation sets 
based on cost functions by smoothed outputs of 
algorithms (“smoothed generalization”)

 Model reduction in dynamical systems: 
quantize sets of ODEs or PDEs (systems biology)

 Relate statistical complexity, i.e. the 
approximation capacity, to algorithmic or 
computational complexity.
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Philosophical speculations
 We experience a paradigm shift from model 

driven reasoning to algorithm dominated 
reasoning (Bernard Chazelle “The Algorithm: Idiom of Modern Science”)

=> model validation more essential than modeling 
since modeling can be algorithmically formulated 
as exploration of model space.
 Ceterum censeo: The coupling of statistical 

complexity and algorithmic complexity should 
be reconsidered in the light of statistical learning 
theory and information theory. 




