Parallel Online Learning

Daniel Hsu Nikos Karampatziakis John Langford

University of Pennsylvania Rutgers University Cornell University Yahoo! Research

Workshop on Learning on Cores, Clusters and Clouds
Online Learning

- Learner gets the next example x_t, makes a prediction p_t, receives actual label y_t, suffers loss $\ell(p_t, y_t)$, updates itself
- Simple and fast predictions and updates
 \[
p_t = w^\top x_t
 \]
 \[
w_{t+1} = w_t - \eta_t \nabla \ell(p_t, y_t)
 \]
- Online gradient descent asymptotically attains optimal regret
- Online learning scales well . . .
- . . . but it’s a sequential algorithm
- What if we want to train on huge datasets?
- We investigate ways of distributing predictions, and updates while minimizing communication.
Delay

- Parallelizing online learning leads to delay problems.
- Temporally correlated or adversarial examples.
- We investigate no delay and bounded delay schemes.
Tree Architectures
Local Updates

Each node in the tree:

- Computes its prediction $p_{i,j}$ based on its weights and inputs
- Sends $\hat{y}_{i,j} = \sigma(p_{i,j})$ to its parent\(^1\)
- Updates its weights based on $\nabla \ell(p_{i,j}, y)$

No delay

Representation power: between Naive Bayes and centralized linear model.

\(^1\)The nonlinearity introduced by σ has an interesting effect
Global Updates

- Local update can help or hurt.
- Improved representation power by more communication.
 - Delayed global training
 - Delayed backprop

For details and experiments come see the poster.