Exploration vs. Exploitation
Challenge Framework

Peter Auer
CiT, University of Leoben
A visitor represents a bandit problem.

A provider realizes a bandit algorithm.

An option o presented by the provider to the visitor represents an arm of the bandit problem.

In contrast to the bandit problem, the success probability of an option varies over time: $P\{r_t = \text{true}|o_t\} = p_t(o_t)$.
Simulated Visitors

Main public method:

```java
boolean selectOption(int optionNo)
```

- The number `optionNo` of the selected option is passed to the visitor, and the visitor returns success (`true`) or failure (`false`), based on the current success probability of the option and the private coin toss of the visitor.
Simulated Visitors

- Additional public methods:

 > int getNumOptions()

 Returns the number of available options, \(\{0, \ldots, \text{getNumOptions}() - 1\}\).

 > float getRegret()

 Actual regret as compared to the sum of success probabilities of the best option in each trial:

 \[
 \sum_t \max_o p_t(o) - \#\{t : r_t = \text{true}\}.
 \]
A provider presents options to a visitor.

The base classes and exemplary learners have been implemented.

Public constructor:

```
ProviderAbstract (SimulatedVisitorAbstract visitor)
```
ProviderAbstract Interface

- void **satisfy**()
 Asks the provider to present an option
 \(o = \text{getCurrentChoice}() \) to the visitor.
 The response \(r \) of the visitor is received and the state of the
 provider is updated by \(\text{updateState}(o, r) \).

- abstract int **getCurrentChoice**()
 abstract void **updateState**(int \(o \), boolean \(r \))
 have to be implemented by the derived classes.
Derived Provider classes

- **ProviderUCB**: Deterministic algorithm for random bandit problems.

- **ProbabilisticProviderAbstract**: Base class for learners which provide a probability distribution over the options. It implements `getCurrentChoice()` by choosing according to this probability distribution. Derived classes have to generate this probability distribution in `updateState()`.

- **RandomProvider**: Chooses uniformly among the options.

- **ShiftingBanditsProvider**: Calculates the probability distribution according to the worst case bandit algorithm with shifting bandits.
Currently implemented options

AsymptoticGrowthOption

ExponentialDecayOption

Parameters:
- time constant, maximum probability
Currently implemented options

GaussianOption

SinusoidalOption

Parameters:
mean, variance, maximum probability
phase offset, frequency, amplitude, amplitude offset
Visitors implemented for the challenge

SimulatedVisitorCoherentVariation

Response Probability

t

0 $2.5e+06$ $5e+06$

0 0.01 0.02
Visitors implemented for the challenge

SimulatedVisitorCoherentVariation

Response Probability

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>50000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>50000</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>
Visitors implemented for the challenge

SimulatedVisitorMixture

Response Probability

![Graph showing response probability over time](image-url)
Visitors implemented for the challenge

SimulatedVisitorMixture

Response Probability

0.02

0.01

0.00

0.00

0 50000 100000

t
Visitors implemented for the challenge

SimulatedVisitorSimple
Visitors implemented for the challenge

SimulatedVisitorSimple

![Graph showing response probability over time](image-url)
Shifting adversarial bandit algorithm

Adversarial bandits vs. random bandits:

- No statistical assumptions on how responses r_t are generated.
- Suitable for unknown, time varying success probabilities.
- The algorithm may again use upper confidence bounds.
- It keeps track of shifts, comparing the successes of the algorithm with the best schedule t_1, \ldots, t_S:

$$\max_{0=t_0<t_1<\ldots<t_S=T} \left(\sum_{s=1}^{S} \left[\max_o \sum_{t=t_{s-1}+1}^{t_s} p_t(o) \right] \right) - \sum_{t=1}^{T} r_t.$$

- Regret [ACFS’2002]: $\tilde{O}\left(\sqrt{TS}\right)$ instead of $O\left(\log T\right)$.
Parameter: S, T.

Initialization:

$$\gamma = \sqrt{SK \log(KT)}/T, \quad w(o) = 1, \quad W = \sum_{o=0}^{K-1} w(o).$$

Repeat for $t = 1, \ldots, T$

1. Choose o_t according to $q(o) = (1 - \gamma)\frac{w(o)}{W} + \frac{\gamma}{K}$.

2. If $r_t = \text{true}$ then $w(o_t) \leftarrow w(o_t) \cdot \exp \left\{ \frac{\gamma}{K q(o_t)} \right\}$.

3. $w(o) \leftarrow w(o) + W/T$.
Shifting adversarial bandit algorithm

Parameter: S, T.

Initialization:

$$\gamma = \sqrt{SK \log(KT)}/T, \quad w(o) = 1, \quad W = \sum_{o=0}^{K-1} w(o).$$

Repeat for $t = 1, \ldots, T$

1. Choose o_t according to $q(o) = (1 - \gamma) \frac{w(o)}{W} + \frac{\gamma}{K}$.

2. If $r_t = \text{true}$ then $w(o_t) \leftarrow w(o_t) \cdot \exp \left\{ \frac{\gamma}{K} \frac{1}{q(o_t)} \right\}$.

3. $w(o) \leftarrow w(o) + W/T$.

• By $w(o)$ an exponentially weighted “unbiased” estimate of the performance of option o is represented.
Parameter: S, T.

Initialization:

$$\gamma = \sqrt{SK \log(KT)/T}, \ w(o) = 1, \ W = \sum_{o=0}^{K-1} w(o).$$

Repeat for $t = 1, \ldots, T$

1. Choose o_t according to $q(o) = (1 - \gamma) \frac{w(o)}{W} + \frac{\gamma}{K}$.

2. If $r_t = \text{true}$ then $w(o_t) \leftarrow w(o_t) \cdot \exp \left\{ \frac{\gamma}{K q(o_t)} \frac{1}{q(o_t)} \right\}$.

3. $w(o) \leftarrow w(o) + W/T$.

- The term γ/K accounts for exploration.
Shifting adversarial bandit algorithm

Parameter: S, T.

Initialization:

$$\gamma = \sqrt{SK \log(KT) / T}, \ w(o) = 1, \ W = \sum_{o=0}^{K-1} w(o).$$

Repeat for $t = 1, \ldots, T$

1. Choose o_t according to $q(o) = (1 - \gamma) \frac{w(o)}{W} + \frac{\gamma}{K}$.

2. If $r_t = \text{true}$ then $w(o_t) \leftarrow w(o_t) \cdot \exp \left\{ \frac{\gamma}{K} \frac{1}{q(o_t)} \right\}$.

3. $w(o) \leftarrow w(o) + W / T$.

- The term W / T keeps weights sufficiently large such that a shift to a new best expert can be performed quickly.
Summary

- Presentation of the framework structure
- Introduction of
 - Baseline Solutions
 - Options
 - Simulated Visitors
- Identification of some problems to be addresses for phase 2 of the challenge.
- Sketch of the Shifting Bandit algorithm.