

A decision procedure for \mathcal{SHOIQ} with Transitive Closure of Roles

Chan LE DUC, Myriam LAMOLLE and Olivier CURE

Université Paris 8 - IUT de Montreuil, Université Marne La Vallée

International Semantic Web Conference, 2013

Why transitive closure of roles is needed?

• Example 1 :

- O_1 : Trans(reachable)
 - $\mathsf{click}\sqsubseteq\mathsf{reachable}$
 - $\begin{array}{l} \mathsf{A} \sqcup \mathsf{B} \sqcup \mathsf{C} \sqsubseteq \exists \mathsf{reachable}^-.\{\mathsf{start}\} \\ \mathsf{C} \sqsubseteq \forall \mathsf{click}^-.\bot \end{array}$

 $\Rightarrow {\sf Consistent}\,!$

 $\begin{array}{l} \textbf{O}_2 : \ \textbf{A} \sqcup \textbf{B} \sqcup \textbf{C} \sqsubseteq \exists (\mathsf{click}^-)^+. \{\mathsf{start}\} \\ \textbf{C} \sqsubseteq \forall \mathsf{click}^-. \bot \end{array}$

 \Rightarrow Inconsistent : design error is detected

Why transitive closure of roles is needed?

• Example 1 :

- O_1 : Trans(reachable)
 - $\mathsf{click}\sqsubseteq\mathsf{reachable}$
 - $\begin{array}{l} \mathsf{A} \sqcup \mathsf{B} \sqcup \mathsf{C} \sqsubseteq \exists \mathsf{reachable}^-.\{\mathsf{start}\} \\ \mathsf{C} \sqsubseteq \forall \mathsf{click}^-.\bot \end{array}$

 $\Rightarrow {\sf Consistent}\,!$

 $\begin{array}{l} \textbf{O}_2 : \ \textbf{A} \sqcup \textbf{B} \sqcup \textbf{C} \sqsubseteq \exists (\mathsf{click}^-)^+. \{\mathsf{start}\} \\ \textbf{C} \sqsubseteq \forall \mathsf{click}^-. \bot \end{array}$

 \Rightarrow Inconsistent : design error is detected

 Example 2 : Human ⊑ ∃hasParent⁺.{Eva} versus Human ⊑ ∃hasAncestor.{Eva} where "hasAncestor" transitive

SHOIQ and Transitive Closure of Roles

- The logic *SHOIQ* :
 - Finite sets of concept, role and (nominals) individual names
 - Concept descriptions :
 C □ D, C □ D, ¬C, ∃R.C, ∀R.C, ≤ nS.C, ≥ nS.C where C, D are concepts; R is a role (possibly inverse and transitive); S is a simple role
 - Concept axioms : $C \sqsubseteq D$ and role axioms : $R \sqsubseteq S$: ontology

SHOIQ and Transitive Closure of Roles

- The logic *SHOIQ* :
 - Finite sets of concept, role and (nominals) individual names
 - Concept descriptions :
 C □ D, C □ D, ¬C, ∃R.C, ∀R.C, ≤ nS.C, ≥ nS.C where C, D are concepts; R is a role (possibly inverse and transitive); S is a simple role
 - Concept axioms : $C \sqsubseteq D$ and role axioms : $R \sqsubseteq S$: ontology
- Transitive closure of roles : $(Q^+)^{\mathcal{I}} = \bigcup_{n>0} (Q^n)^{\mathcal{I}}$ with an

interpretation $\ensuremath{\mathcal{I}}$

In SHOIQ₍₊₎ (SHOIQ with transitive closure), one can say : ∃R⁺.C or ∀R⁺.C but not

 $\leq nS^+$. *C* [Horrocks, Sattler and Tobies, 1999], or $R \sqsubseteq S^+$ [Le Duc and Lamolle, 2010]

Why is $SHOIQ_{(+)}$ tricky?

• SHOIQ has a forest-like model whose the infinite part is tree-like [Horrocks and Sattler, 2005]

Why is $SHOIQ_{(+)}$ tricky?

- SHOIQ has a forest-like model whose the infinite part is tree-like [Horrocks and Sattler, 2005]
- $\mathcal{SHIQ}_{(+)}$ has a tree-like model [Le Duc, Lamolle and Curé, 2011]

Why is $SHOIQ_{(+)}$ tricky?

- *SHOIQ* has a forest-like model whose the infinite part is tree-like [Horrocks and Sattler, 2005]
- SHIQ₍₊₎ has a tree-like model [Le Duc, Lamolle and Curé, 2011]
- There exists a consistent ontology in SHOIQ₍₊₎ whose all models are non-tree-like
 {o} ⊆ A; A □ B ⊆ ⊥; A ⊑ ∃R.A □ ∃R'.B; B ⊑ ∃S⁺.{o}
 {o} ⊑ ∀X⁻.⊥; X is functional with X ∈ {R, R', S}

Overview of the algorithm

• Goal : constructing a model of a $\mathcal{SHOIQ}_{(+)}$ ontology

- Key structures :
 - A star-type for representing a set of individuals
 - A frame and sections for representing a model
 - A new blocking condition based on sections
- Algorithm :

- \bullet Goal : constructing a model of a $\mathcal{SHOIQ}_{(+)}$ ontology
- Key structures :
 - A star-type for representing a set of individuals
 - A frame and sections for representing a model
 - A new blocking condition based on sections
- Algorithm :

Star-type

Star-types and linking

- \bullet Goal : constructing a model of a $\mathcal{SHOIQ}_{(+)}$ ontology
- Key structures :
 - A star-type for representing a set of individuals
 - A frame and sections for representing a model
 - A new blocking condition based on sections
- Algorithm :

Frame and sections

Frame and sections (2)

With sections, one can say that a concept $\exists Q^+.C$ is satisfied :

- in the past
- in the future
- somewhere from the future
- somewhere from the past

- Goal : constructing a model of a $\mathcal{SHOIQ}_{(+)}$ ontology
- Key structures :
 - A star-type for representing a set of individuals
 - A frame and sections for representing a model
 - A new blocking condition based on sections
- Algorithm :

Blocking condition

- Each ray r in the blocking (blocked) section blocks (is blocked by) a ray r' in the blocked (blocking) section such that (i) L(r) = L(r'), and (ii) each ∃Q⁺.C in both r and r' is satisfied in "the same way"
- Each concept $\exists Q^+.C$ in the blocking section is satisfied

- \bullet Goal : constructing a model of a $\mathcal{SHOIQ}_{(+)}$ ontology
- Key structures :
 - A star-type for representing a set of individuals
 - A frame and sections for representing a model
 - A new blocking condition based on sections
- Algorithm :

Termination is a consequence of the following facts :

- The algorithm never removes a star-type
- The number of sections from nominal to blocked one is bounded by $\mathcal{O}(2^{2^{|(\mathcal{T},\mathcal{R})|}})$
- Checking satisfaction of a concept ∃Q⁺.D over a frame is bounded by a polynomial function in the size of the frame

Soundness : from a valid frame to a model

- A frame is valid if
 - all star-types are valid
 - each nominal star-type is not duplicated
 - each concept $\exists Q^+.C$,
 - either it is directly satisfied in the frame
 - or there is a $Q\mbox{-sequence}$ leading to the blocked section containing a $\exists Q^+.C$

Soundness : from a valid frame to a model

- A frame is valid if
 - all star-types are valid
 - each nominal star-type is not duplicated
 - each concept $\exists Q^+.C$,
 - either it is directly satisfied in the frame
 - or there is a Q-sequence leading to the blocked section containing a $\exists Q^+.C$
- Adapting the unravelling technique for frames :
 - defining a set of paths over the frame
 - extending infinitely the set of defined paths through blocked and blocking sections
 - satisfying a concept ∃Q⁺.C (extended path) by a Q-sequence leading to an extended path or to an initial path containing ∃Q.C

Main ideas :

• A model can be reduced to a frame with valid star-types :

The first section contains only nominal star-types It contains a section whose all concepts $\exists Q^+.D$ are satisfied (blocking section) Parts between two "blockable" sections can be removed until a blocked section is detected

• The reduced model can guide the algorithm to build a valid frame.

Conclusion and Future Work

Conclusion :

- A first decision procedure for $SHOIQ_{(+)}$
- A structure, namely frame, with a new blocking condition for representing infinite non-tree-like parts of a model
- The complexity of the algorithm is high (triply nondeterministic exponential)

Conclusion and Future Work

Conclusion :

- A first decision procedure for $\mathcal{SHOIQ}_{(+)}$
- A structure, namely frame, with a new blocking condition for representing infinite non-tree-like parts of a model
- The complexity of the algorithm is high (triply nondeterministic exponential)
- Future work :
 - Reducing the size of frames
 - A more goal-oriented algorithm (tableau algorithm)
 - An implementation in progress
 - Hardness of SHOIQ(+)
 - The technique could be used for other logics (ZOIQ?)