CALL CENTRE KNOWLEDGE ACQUISITION AND DECISION SUPPORT PROTOTYPE

CONFERENCE ON DATA MINING AND DATA WAREHOUSES

ZALA HERGA, LUKA BRADEŠKO
The paper

- An approach to knowledge acquisition and computer reasoning support in a call center environment
- Expert System (ES) that is able to assist less technically versed operators
- An inference engine and knowledge-based system that uses ontology driven natural language (NL) dialogs.
Objectives

- Fuel consumption optimization
- Interactions between a certain car part malfunction and severity of car fault
- Construction of an ES that will efficiently obtain the most relevant information and based on newly acquired knowledge find a solution
- Designing appropriate knowledge acquisition rules
Implementation

- Using Cyc AI Environment

- Cyc KB attempts to assemble a comprehensive ontology and knowledge base of everyday common sense knowledge, with the goal of enabling AI applications to perform human-like reasoning.

- KA module enables adding new knowledge to KB

- Natural language understanding and generation

- Rule based approach
Ontology

Direction: Forward.

In Mt: AMZSMt.

f: (implies
 (and
 (malfunctionTypeAffectsSit ?SIT RoadVehicle VehicleIgnitionMalfunction)
 (situationBeforeEvent ?SIT ConsumerElectronicDevice Device-On)
 (stateOfDeviceTypeInSituation ?SIT ChargingSystemIndicatorLight Device-On))
 (and
 (stuffNeeded ?SIT RoadsideAssistanceCar)
 (stuffNeeded ?SIT AutomobileBattery)).
Collection:
AMZSReport

(#$genres #$AMZSReport #$InformationTransferEvent)

(#$isa
#$AMZSIssue123
#$AMZSReport)

(#$topicOfInfoTransfer
#$AMZSIssue123
#$InconvenientTrafficEvent123)

Individual:
AMZSIssue#

senderOfInfo
memberWithIDInIssue
issueEventType
dateOfEvent

Individual:
InconvenientTrafficEvent#

isa (type of event)
objectFoundInLocation
roadVehicleOrientation
confiningRegionOfAnObject
malfunctionAffects
stateOfDeviceInSituation
stuffNeeded
numberOfItems
actualMalfunction
Prototype

- demo
Future work

- Expanding the rules so that the diagnosis can be more exact.
- Extending the KA part.
- Integrating knowledge based on statistical analysis.
- Implementing an extra KA branch that will collect feedbacks.