Real-time Decisions on Big Data

Leonard Newnham
Overview

- Causata data platform
- Automated Decisioning objectives
- Challenges
What We Do and Where We Fit

Data Sources
- Website Behavioural Data
- Email
- CRM Database
- Data Warehouse
- Etc…

Touchpoints
- Website CMS
- Call Centre
- Campaign Management
- Mobile App
- Etc…

- Storage and Assembly
- Predictive Modelling + Analysis
- Real-time Provisioning

causata
Customer Interactions

- Website Session
- Call Center Question
- Website Session
- Loyalty Card Promo Email
- Website Session
- Loyalty Card Sign Up
- Major Product Purchase in Store
Total spend in past month

Select purchase events over past month and extract price

Purchase: Music CD $13.99 SKU 87645727
Purchase: Sports Golf Clubs $259.99 SKU 76329489

Apply sum calculator

13.99 + 259.99 = 273.98
Large Number of Variables

- Everything known about the visitor across multiple channels
 - Web data – page view history
 - Call centre data
 - Online accounts
 - Product holdings
 - geo-demographic data
Large Number of Variables

- Everything known about the visitor across multiple channels
 - Web data – page view history
 - Call centre data
 - Online accounts
 - Product holdings
 - geo-demographic data

- Meta-data on the available actions
 - price point, etc
Large Number of Variables

- Everything known about the visitor across multiple channels
 - Web data – page view history
 - Call centre data
 - Online accounts
 - Product holdings
 - Geo-demographic data

- Meta-data on the available actions
 - Price point, etc.

- Environmental variables
 - Browser language, timezone, etc.
Large Number of Variables

- Everything known about the visitor across multiple channels
 - Web data – page view history
 - Call centre data
 - Online accounts
 - Product holdings
 - geo-demographic data

- Meta-data on the available actions
 - price point, etc

- Environmental variables
 - Browser language, timezone, etc.

- Typically 500+
Requirements

- Gathering data
 - Structure data by individual customer. Assemble all interactions, from many channels, into a complete customer record
Requirements

- Gathering data
 - Structure data by individual customer. Assemble all interactions, from many channels, into a complete customer record

- Making Decisions
 - Retrieve customer record and determine best action with low latency (< 100 ms)
Requirements

- Gathering data
 - Structure data by individual customer. Assemble all interactions, from many channels, into a complete customer record

- Making Decisions
 - Retrieve customer record and determine best action with low latency (< 100 ms)

- Displaying Results
 - Visualisation and explanation
Requirements

- Gathering data
 - Structure data by individual customer. Assemble all interactions, from many channels, into a complete customer record

- Making Decisions
 - Retrieve customer record and determine best action with low latency (< 100 ms)

- Displaying Results
 - Visualisation and explanation

- Scale to hundreds of millions of customers
Requirements

- Gathering data
 - Structure data by individual customer. Assemble all interactions, from many channels, into a complete customer record

- Making Decisions
 - Retrieve customer record and determine best action with low latency (< 100 ms)

- Displaying Results
 - Visualisation and explanation

- Scale to hundreds of millions of customers

- Optimise on goals that matter to customer
Optimise on Goals that Matter

Visit website from online banking → Research credit cards → Request application form → Speak to advisor in branch → Sign agreement → Ongoing relationship
Optimise on Goals that Matter

Current state of the art is to locally optimize each interaction, in terms of immediate next step.
Optimise on Goals that Matter

Current state of the art is to locally optimize each interaction, in terms of immediate next step.

With all the data, can optimize over true long term business goals.
Why Next Best Action May Not Always be Best

- To maximise long term gain there may be a short term cost:
Why Next Best Action May Not Always be Best

- To maximise long term gain there may be a short term cost:
 - special offers and discounts
Why Next Best Action May Not Always be Best

- To maximise long term gain there may be a short term cost:
 - special offers and discounts

- Or a deferred selling opportunity:
Why Next Best Action May Not Always be Best

- To maximise long term gain there may be a short term cost:
 - special offers and discounts

- Or a deferred selling opportunity:
 - restricted number of offers made after sale, eg
 - upgrades options after airline ticket purchase
 - extended warranty
 - Insurance

- determine best time to send email
Reinforcement Learning

- Choose the actions which will yield the greatest long-term reward
- Reward can be any function we wish to optimize
- Rewards may be deferred to some time in the future
Challenges

- Big Data is not so big sometimes
- Concurrent customer interactions
- Speed of learning
- Visualisation
- Scalability
Big Data is not so Big Sometimes

- Learn objective functions that matter to client (part 2)
Big Data is not so Big Sometimes

- Learn objective functions that matter to client (part 2)
 - Revenue rather than click-through
Big Data is not so Big Sometimes

- Learn objective functions that matter to client (part 2)
 - Revenue rather than click-through
 - Optimise multiple objectives
Big Data is not so Big Sometimes

- Changing Action Set Over Time
Big Data is not so Big Sometimes

- Changing Action Set Over Time
- Individual actions may have a short lifetime
 - Marketing campaigns are frequently limited in time
 - May change due to seasonal variation – eg summer sales
 - May change due to external factors – eg change of interest rate
Big Data is not so Big Sometimes

- Changing Action Set Over Time
 - Individual actions may have a short lifetime
 - Marketing campaigns are frequently limited in time
 - May change due to seasonal variation – eg summer sales
 - May change due to external factors – eg change of interest rate

- -> We would like to not learn from scratch with every action change
Big Data is not so Big Sometimes

- Changing Visitor Behaviour Over Time
Big Data is not so Big Sometimes

- Changing Visitor Behaviour Over Time
 - Data becomes stale
 - It may be gradual
 - Popularity of product may wane
 - This may be abrupt
 - Summer heat-wave, Interest rate changes
Big Data is not so Big Sometimes

- Changing Visitor Behaviour Over Time
 - Data becomes stale
 - It may be gradual
 - Popularity of product may wane
 - This may be abrupt
 - Summer heat-wave, Interest rate changes

- At some point additional historic data will add more noise than signal
Big Data is not so Big Sometimes

- Changing Visitor Behaviour Over Time
 - Data becomes stale
 - It may be gradual
 - Popularity of product may wane
 - This may be abrupt
 - Summer heat-wave, Interest rate changes

- At some point additional historic data will add more noise than signal
 - Learn from data up to that point and no more
Big Data is not so Big Sometimes

- Learn objective functions that matter to client
 - Revenue rather than click-through

- Changing action set over time

- Changing visitor behaviour over time
Big Data is not so Big Sometimes

- Learn objective functions that matter to client
 - Revenue rather than click-through

- Changing action set over time

- Changing visitor behaviour over time

- Learn rapidly in Proof of Concept implementations
Big Data is not so Big Sometimes

- Learn objective functions that matter to client
 - Revenue rather than click-through

- Changing action set over time

- Changing visitor behaviour over time

- Learn rapidly in Proof of Concept implementations

- Most data is noise
Big Data is not so Big Sometimes

- Learn objective functions that matter to client
 - Revenue rather than click-through

- Changing action set over time

- Changing visitor behaviour over time

- Learn rapidly in Proof of Concept implementations

- Most data is noise

- -> smart counting is not sufficient
Concurrent Customer Interactions

- At any time there are a large number of customer trajectories in progress
Concurrent Customer Interactions

- At any time there are a large number of customer trajectories in progress
- Time between each interaction is highly variable
Concurrent Customer Interactions

- At any time there are a large number of customer trajectories in progress
- Time between each interaction is highly variable

- Need to avoid long delays to learning
Concurrent Customer Interactions

- Need mechanism where:
 -
 -
Concurrent Customer Interactions

- Need mechanism where:
 - Learning can be transferred as quickly as possible to other concurrent customers

Visit website from online banking → Research credit cards → Request application form → Speak to advisor in branch → Sign agreement → X
Need mechanism where:
- Learning can be transferred as quickly as possible to other concurrent customers
- Without waiting for next interaction or end of sequence
Speed of Learning

- Experience replay
- Regularisation
- Adaptive learning rate, eg IDBD
- Weight initialisation
- Improved Exploration
 - E-greedy
 - Simple but can perform badly when more exploration is required
 - UCB type exploration
Visualisation and Explanation

- How can I trust the system will work?
- What has the system learned?
Visualisation and Explanation

- How can I trust the system will work?
- What has the system learned?

- Simple accessible views
 - Not easy with complex internal representation
Visualisation and Explanation

- How can I trust the system will work?
- What has the system learned?

- Simple accessible views
 - Not easy with complex internal representation
- Explanation of why individual decisions are made
Visualisation and Explanation

- How can I trust the system will work?
- What has the system learned?

- Simple accessible views
 - Not easy with complex internal representation
- Explanation of why individual decisions are made

- Encourage operator engagement
Scalability and Redundancy

- Multiple learning agents
Scalability and Redundancy

- Multiple learning agents

- Regular dissemination of learning to other agents
THANK YOU

Leonard Newnham
leonard.newnham@nice.com