RANDOM MATRIX
THEORY AND PRACTICE:
OLD TRICKS FOR NEW DOGS

Pierpaolo Vivo
(LPTMS - CNRS - Paris XI)
Why are random matrix eigenvalues cool?

Message

- Ingredient: Take Any important mathematics
- Then Randomize!
- This will have many applications!

from a talk by Alan Edelman (MIT)
"It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out."

E. Artin (Geometric Algebra, p. 14)
ON THE DISTRIBUTION OF THE ROOTS OF CERTAIN
SYMMETRIC MATRICES

BY EUGENE P. WIGNER

(Received September 19, 1957)
The Hamiltonian (total energy) of heavy nuclei: hopeless task!

BUT.....

The Hamiltonian in a given basis is just a **HUGE** matrix....

Idea: take the matrix entries **at random**...
Random Matrices in Statistics

Covariance estimation for the multivariate normal distribution

John Wishart

Random Matrices in Numerical Linear Algebra

Model for floating-point errors in LU decomposition

now combining (8.6) and (8.7) we obtain our desired result:

\[
\text{Prob} (\lambda > 2\sigma n) < \frac{(rn)^n - 1/2e^{-rn^{1/2}e^n}}{\pi n^{n-1} (r-1)n} \cdot 2^{-n/2}
\]

(8.8)

\[
= \left(\frac{2\pi}{e^{r-1}}\right)^n \times \frac{1}{4(r-1)(r^n)^{1/2}}.
\]

We sum up in the following theorem:

(8.9) The probability that the upper bound of the matrix \(A \) of (8.1) exceeds \(2.72 \sigma n^{1/2} \) is less than \(.027 \times 2^{-n/2} \), that is, with probability greater than 99% the upper bound of \(A \) is less than \(2.72 \sigma n^{1/2} \) for \(n = 2, 3, \ldots \).

This follows at once by taking \(r = 3.70 \).

John von Neumann

The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics (1925-1954). This material is available in specialised libraries and archives. We believe there is a clear academic interest in making this historical material more widely available to a scholarly audience online. These articles have been made available online, by the Annals of Human Genetics, UCL and Blackwell Publishing Ltd strictly for historical and academic reasons. The work of eugenicists was often pervaded by prejudice against racial, ethnic and disabled groups. Publication of this material online is for scholarly research purposes is not an endorsement or promotion of the views expressed in any of these articles or eugenics in general. All articles are published in full, except where necessary to protect individual privacy. We welcome your comments about this archive and its online publication.

\[
\pi^{\frac{1}{n}} \frac{(\frac{1}{2}n - 1)! \cdots (\frac{1}{2}n - \frac{1}{2}p - \frac{1}{2})! (\frac{1}{2}p - 1)! \cdots (-\frac{1}{2})!}{(\frac{1}{2}n - \frac{1}{2}p - \frac{1}{2})! (\frac{1}{2}n - \frac{1}{2}p - \frac{1}{2})! (\frac{1}{2}n - \frac{1}{2}p - \frac{1}{2})!} \\
\times e^{-\phi_1 - \cdots - \phi_p} (\phi_1 \cdots \phi_p)^{i - p - \frac{1}{2}} (\phi_1 - \phi_2) \cdots (\phi_{p-1} - \phi_{n}) \, d\phi_1 \cdots d\phi_p,
\]

where

\[0 < \phi_p < \phi_{p-1} < \ldots < \phi_1 < \infty.\]

[\text{R.A. Fisher, 1939}]
\[N = 5 \]

\[
\begin{pmatrix}
0.5377 & 0.2631 & -1.8044 & 0.3286 & 0.4951 \\
0.2631 & -0.4336 & 1.6888 & 1.7271 & 0.7810 \\
-1.8044 & 1.6888 & 0.7254 & 0.7133 & 0.7160 \\
0.3286 & 1.7271 & 0.7133 & 1.4090 & 1.5237 \\
0.4951 & 0.7810 & 0.7160 & 1.5237 & 0.4889
\end{pmatrix}
\]

\[
\vec{\lambda} = \begin{bmatrix}
-2.4341 \\
-0.8386 \\
-0.5203 \\
2.2594 \\
4.2610
\end{bmatrix}
\]

Typically we are interested in \(N \to \infty \), but sometimes...
Basic Goal of RMT

From

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \]

Joint Probability Density of Entries

To

... as much as we can about the eigenvalues

- Average density
- Spacings
- Largest and smallest
-
Ideally...

\[P(H_{11}, \ldots, H_{NN}) \]

\[P(\lambda_1, \ldots, \lambda_N) \]

Not always possible!

“When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong.” (Arthur C. Clarke)
Let's repeat the experiment many times and histogram all the eigenvalues...

“Average Spectral Density”
Wigner’s “Semicircle” Law

\[\rho_{N \to \infty}(\lambda) \rightarrow \frac{1}{\sqrt{2\beta N}} f \left(\frac{\lambda}{\sqrt{2\beta N}} \right) \]

\[f(x) = \frac{2}{\pi} \sqrt{1 - x^2} \]

\[\beta = 1, 2, 4 \]

Dyson’s “threefold way”
Wigner’s “Semicircle” Law

\[\rho_{N \to \infty}(\lambda) \to \frac{1}{\sqrt{2\beta N}} f \left(\frac{\lambda}{\sqrt{2\beta N}} \right) \]

\[f(x) = \frac{2}{\pi} \sqrt{1 - x^2} \]

...which btw is **not** a semicircle
Johannes Kepler (1571-1630)
First occurrence (?) of the “semicircle” law in RMT. Originally not derived for Gaussian matrices!
Possible questions...

• Is semicircle law “universal”?

• If not, can we derive the corresponding spectral density of any matrix model?

• If we can’t why??

Classification!
Matrices with **real** eigenvalues: a layman’s classification

Independent Entries

\[P(H) = \prod_{i=1}^{N} f_i(x_{ii}) \prod_{i<j}^{N} f_{ij}^{(1)}(x_{ij}) f_{ij}^{(2)}(y_{ij}) \]

...called Wigner matrices
Matrices with **real** eigenvalues: a layman’s classification

...this means that eigenvectors are not that important!

\[\mathcal{P}(H) = \mathcal{P}(UHU^{-1}) \]
Matrices with **real** eigenvalues: a layman’s classification

\[
\mathcal{P}(H_{11}, \ldots, H_{NN}) \propto \prod_{i} e^{-H_{ii}^2/2\sigma^2} \prod_{j>k} e^{-2H_{jk}^2/2\sigma^2} \\
\propto e^{-\frac{1}{2\sigma^2} \text{Tr}(H^2)}
\]

GOE
STATISTICAL PROPERTIES OF ATOMIC AND NUCLEAR SPECTRA

BY

CHARLES E. PORTER
School of Physics, University of Minnesota.
Minneapolis, Minnesota

NORBERT ROSENZWEIG
Physics Division, Argonne National Laboratory,
Lemont, Illinois
The Gaussian ensemble

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \propto \prod_i e^{-H_{ii}^2/2\sigma^2} \prod_{j > k} e^{-2H_{jk}^2/2\sigma^2} \]

\[\propto e^{-\frac{1}{2\sigma^2} \text{Tr}(H^2)} \]

\[\mathcal{P}(H) = \mathcal{P}(UHU^{-1}) \]

It was shown by Porter and Rosenzweig\(^4\) that the special form of Eq. (1) is implied by two apparently more general requirements: (i) the various components \(H_{ij}\) to be statistically independent, and (ii) the function \(D(H_{ij})\) to be invariant under all transformations \(H \rightarrow R^{-1}HR\), where \(R\) is a real orthogonal matrix. The requirement (ii) is a natural one in any ensemble that attempts to give equal weight to all kinds of interactions. However, requirement (i) is artificial and without clear physical motivation. To picture the \(H_{ij}\) as resulting from some "random process" of a conventional kind does not seem reasonable. Therefore the definition of \(E_0\) remains somewhat arbitrary.

The basic reason for the unsatisfactory features of Eq. (1) is that one cannot define a uniform probability distribution on an infinite range. Thus some arbitrary restriction of the magnitudes of the \(H_{ij}\) is inevitable. It is impossible to define an ensemble in terms of the \(H_{ij}\) in which all interactions are equally probable.
Anything else?

Eigenvalue models [5 to 10 cases]

Dumitriu-Edelman model
Matrices with **real** eigenvalues: a layman’s classification

Given the choice between the two sets, which one would you prefer to work on?
Matrices with **real** eigenvalues: a layman’s classification

- Independent Entries
- Rotational Invariance

- “Few” analytical tools
- “Many” analytical tools

Why??
Ideally...

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \]

\[\mathcal{P}(\lambda_1, \ldots, \lambda_N) \]

Not always possible!
Simplified summary
Generalities
Random eigenvalues are not like random points on a segment.
Level Spacings: universality

\[\mathcal{P}(s) \propto s^\beta e^{-s^2} \]

Wigner-Dyson law
Parking in the City

P. Šeba

Modelling gap-size distribution of parked cars using random-matrix theory

A.Y. Abul-Magd
Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

We apply the random-matrix theory to the car-parking problem. For this purpose, we adopt a Coulomb gas model that associates the coordinates of the gas particles with the eigenvalues of a random matrix. The nature of interaction between the particles is consistent with the tendency of the drivers to park their cars near to each other and in the same time keep a distance sufficient for manoeuvring. We show that the recently measured gap-size distribution of parked cars in a number of roads in central London is well represented by the spacing distribution of a Gaussian unitary ensemble.

PACS: 05.40; 05.20.Gg; 02.50.r; 68.43.-h

Keywords: Car parking; Coulomb gas; Gaussian unitary ensemble
Twin Prime Conjecture

There are two related conjectures, each called the twin prime conjecture. The first version states that there are an infinite number of pairs of twin primes (Guy 1994, p. 19). It is not known if there are an infinite number of such primes (Wells 1986, p. 41; Shanks 1993, p. 30), but it seems almost certain to be true. While Hardy and Wright (1979, p. 5) note that “the evidence, when examined in detail, appears to justify the conjecture,” and Shanks (1993, p. 219) states even more strongly, “the evidence is overwhelming,” Hardy and Wright also note that the proof or disproof of conjectures of this type “is at present beyond the resources of mathematics.”

Unknown mathematician makes historical breakthrough in prime theory

Yitang Zhang is a largely unknown mathematician who has struggled to find an academic job after he got his PhD, working at a Subway sandwich shop before getting a gig as a lecturer at the University of New Hampshire. He’s just had a paper accepted for publication in Annals of Mathematics, which appears to make a breakthrough towards proving one of mathematics’ oldest, most difficult, and most significant conjectures, concerning “twin” prime numbers. According to the Simons Science News article, Zhang is shy, but is a very good, clear writer and lecturer.

Now Zhang has broken through this barrier. His paper shows that there is some number N smaller than 70 million such that there are infinitely many pairs of primes that differ by N. No matter how far you go into the deserts of the truly gargantuan prime numbers — no matter how sparse the primes become — you will keep finding prime pairs that differ by less than 70 million.
Universal vs. Non-Universal

Local
- Spacings
- Individual Eigenvalues
-

Global
- Spectral Density
-

However, the semicircle is quite robust....

Random sign symmetric matrix

The matrices to be considered are $2N + 1$ dimensional real symmetric matrices; N is a very large number. The diagonal elements of these matrices are zero, the non diagonal elements $v_{ik} = v_{ki} = \pm v$ have all the same absolute value but random signs. There are $\mathcal{N} = 2^{N(2N+1)}$ such matrices. We shall calculate, after
Ideally...

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \]

\[\mathcal{P}(\lambda_1, \ldots, \lambda_N) \]

Not always possible!
Ideally...

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \]

\[\mathcal{P}(\lambda_1, \ldots, \lambda_N) \]

Not always possible!

Recipe?
Weyl's lemma

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \rightarrow \mathcal{P}(\lambda_1, \ldots, \lambda_N) \]

\[\mathcal{P}[H] = \phi (\text{Tr} H, \ldots, \text{Tr} H^N) \]

\[\mathcal{P}(\lambda_1, \ldots, \lambda_N) = C_{N,\beta} \phi \left(\sum_{i=1}^{N} \lambda_i, \ldots, \sum_{i=1}^{N} \lambda_i^N \right) \prod_{j<k} |\lambda_j - \lambda_k|^\beta \]
$\mathcal{P}(H_{11}, \ldots, H_{NN}) \propto \prod_i e^{-H_{ii}^2/2\sigma^2} \prod_{j>k} e^{-2H_{jk}^2/2\sigma^2}$

$\propto e^{-\frac{1}{2\sigma^2} \text{Tr}(H^2)}$

ON THE DISTRIBUTION OF ROOTS OF CERTAIN DETERMINANTAL EQUATIONS

BY P. L. HSU [1939]

ROOTS OF DETERMINANTAL EQUATIONS

Theorem 2. If the $\frac{1}{2}p(p+1)$ variables $s_{ij}(i \leq j = 1, 2, \ldots, p)$ have such a domain of existence that the symmetric matrix $\|s_{ij}\|$ is always non-singular, and if they are so distributed that their joint probability density function depends only on the latent roots, say $\lambda_1, \lambda_2, \ldots, \lambda_p$, arranged in the order of descending magnitude, of $\|s_{ij}\|$, i.e. if

$$df = g(\lambda_1, \lambda_2, \ldots, \lambda_p) \prod ds_{ij},$$

then the joint distribution law of the λ_i is the following:

$$\pi^{\frac{1}{2}p(p+1)} \left\{ \prod_{i=1}^p \Gamma_{\frac{1}{2}}(p-i+1) \right\}^{-1} \left\{ \prod_{i=1}^p \prod_{j=i+1}^p (\lambda_i - \lambda_j) \right\} g(\lambda_1, ..., \lambda_p) \prod d\lambda. \quad \ldots \ldots (24)$$

Proof. It is a familiar argument that the general formula (24) will follow if we can find...
Strongly Correlated Random Variables!!

Rotationally Invariant Models

$$P_\beta(\lambda_1, \ldots, \lambda_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{1}{2} \sum_{i=1}^{N} \lambda_i^2} \prod_{j<k} |\lambda_j - \lambda_k|^\beta$$

$$\beta = 1, 2, 4$$

Confinement (non-universal)

Level Repulsion (universal)

Strongly Correlated Random Variables!!
Vandermonde determinant

\[\prod_{i<j}^N (\lambda_i - \lambda_j) = (-1)^{\frac{N(N-1)}{2}} \det \begin{pmatrix} 1 & \cdots & 1 \\ \lambda_1 & \cdots & \lambda_N \\ \vdots & \ddots & \vdots \\ \lambda_1^{N-1} & \cdots & \lambda_N^{N-1} \end{pmatrix} \]

Very funny properties...

It is instructive to consider the 2×2 case. There we have for instance:

\[(\lambda_1 - \lambda_2) = \frac{-1}{3 \cdot 5} \det \begin{pmatrix} 3 \\ 2 + 5\lambda_1 \end{pmatrix} = \frac{-1}{5 \cdot \sqrt{2}} \det \begin{pmatrix} 5 \\ 3 + \sqrt{2}\lambda_1 \end{pmatrix} \]

Arbitrary polynomials...

\[\prod_{i<j}^N (\lambda_i - \lambda_j) = \frac{(-1)^{\frac{N(N-1)}{2}}}{a_0 a_1 \ldots a_{N-1}} \det \begin{pmatrix} \pi_0(\lambda_1) & \cdots & \pi_0(\lambda_N) \\ \pi_1(\lambda_1) & \cdots & \pi_1(\lambda_N) \\ \vdots & \ddots & \vdots \\ \pi_{N-1}(\lambda_1) & \cdots & \pi_{N-1}(\lambda_N) \end{pmatrix} \]

\[\pi_k(\lambda_i) = a_k \lambda_i^k + \]
A few modern applications of RMT
The Riemann Hypothesis

\[\zeta(x) = \frac{1}{\Gamma(x)} \int_0^\infty \frac{u^{x-1}}{e^u - 1} du = \sum_{k=1}^\infty \frac{1}{k^x} \]

All nontrivial roots of \(\zeta(x) \) satisfy Re(x)=1/2. (Trivial roots at negative even integers.)
All nontrivial roots of $\zeta(x)$ satisfy $\text{Re}(x)=1/2$. (Trivial roots at negative even integers.)
...it is very probable that all roots are real. One would, however, wish for a strict proof of this; I have, though, after some fleeting futile attempts, provisionally put aside the search for such, as it appears unnecessary for the next objective of my investigation.
“Sometimes I think that we essentially have a complete proof of the Riemann Hypothesis except for a gap. The problem is, the gap occurs right at the beginning, and so it’s hard to fill that gap because you don’t see what’s on the other side of it.”

Hugh Lowell Montgomery
Montgomery's Pair Correlation Conjecture

Montgomery's pair correlation conjecture, published in 1973, asserts that the two-point correlation function $R_2(r)$ for the zeros of the Riemann zeta function $\zeta(z)$ on the critical line is

$$R_2(r) = 1 - \frac{\sin^2(\pi r)}{(\pi r)^2}.$$

As first noted by Dyson, this is precisely the form expected for the pair correlation of random Hermitian matrices (Derbyshire 2004, pp. 287-291).

In 1972, Hugh Montgomery, a number theorist at the University of Michigan, was visiting the Institute for Advanced Study. Montgomery had been studying the distribution of zeroes of the zeta function, in hopes of gaining insight into the Riemann Hypothesis. He was able to prove that the Riemann Hypothesis had implications for the spacing of zeroes along the critical line, but his key discovery was an additional property that the zeroes seemed to have, one which implied a particularly nice formula for the average spacing between zeroes.

During tea one day at the Institute, Montgomery was introduced to Dyson and described his conjecture. Dyson immediately recognized it as the same result as had been obtained for random matrices.

"It just so happened that he was one of the two or three physicists in the world who had worked all of these things out, so I was actually talking to the greatest expert in exactly this!" Montgomery recalls.

Odlyzko's computations agree amazingly well with Montgomery's conjecture.
Nearest Neighbor Spacings & Pairwise Correlation Functions

Figure 1
Nearest-neighbor spacings among 78 million zeroes beyond the 1000-th zero of $\zeta(s)$, versus $y(\zeta(s))$.

Figure 2
Pair correlation for zeroes of $\zeta(s)$ based on 6×10^8 zeroes near the 1000-th zero, versus the GUE summand density $1 - (4\pi x)^2$.

14/08/13
Simple Proof of Riemann's Hypothesis of the Zeta function
by
6/20/2006

The Zeta function is defined as:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \ldots s = 1 (k = 1 \to \infty)$$

Hardy, 1999 showed that:

$$0 = \zeta(1-s) = \zeta(s)$$

where $$\zeta(s)$$ extends $$\zeta(s)$$ into

for all $$0 < s < 1$$ at the "non-trivial" zeros

$$0 = \sum_{k=1}^{\infty} \frac{1}{k^{1-s}} = \sum_{k=1}^{\infty} \frac{1}{k^s}$$

for all $$0 < s < 1$$, positive

$$0 = \sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{1}{k^{(1-s)}}$$

$$0 = \sum_{k=1}^{\infty} \left(\frac{1}{k^{1-s}} - \frac{1}{k^s} \right)$$

$$0 = \sum_{k=1}^{\infty} \frac{k^{(1-s)} - k^{-s}}{k}$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{k^{(1-s)} - k^{-s}}{k} = 0 = \sum_{k=1}^{\infty} \left(\frac{0}{k} \right)$$ if $$\exists$$

$$k^{(1-s)} - k^{-s} = 0 \Rightarrow (1-s) = s$$ for $$k = 1 \to \infty, 0 < s < 1$$

substituting complex $$s \,(1-(\sigma + ix)) = (\sigma + ix)$$

for $$\sigma = 1 - s \Rightarrow 2\sigma = 1$$

$$\Rightarrow \sigma = \frac{1}{2} \Rightarrow \sigma + ix = \frac{1}{2} - ix \Rightarrow \Re[s] = \frac{1}{2} \text{ for } k = 1 \to \infty, 0 < s < 1$$, critical strip

QED

Non-intersecting Brownian motion paths

- Take \(n \) independent 1-dimensional Brownian motions with time in \([0, 1]\) conditioned so that:
 - All paths start and end at the same point.
 - The paths do not intersect at any intermediate time.

- **Remarkable fact:** At any intermediate time the positions of the paths have exactly the same distribution as the eigenvalues of an \(n \times n \) GUE matrix (up to a scaling factor).

- Positions of five non-intersecting Brownian paths behave the same as the eigenvalues of a \(5 \times 5 \) GUE matrix

This interpretation is basic for the connection of random matrix theory with growth models of statistical physics.

Introduction. Since the pioneering work of de Gennes [1], followed up by Fisher [2], the subject of vicious (non-intersecting) random walkers has attracted a lot of interest among physicists. It has been studied in the context of wetting and melting [2], networks of polymers [3] and fibrous structures [1], persistence properties in nonequilibrium systems [4] and stochastic growth models [5, 6]. There also exist connections between the
Covariance Matrices

\[
X = \begin{bmatrix}
1 & X_{11} & X_{12} \\
2 & X_{21} & X_{22} \\
3 & X_{31} & X_{33}
\end{bmatrix}
\]

\[
X^t = \begin{bmatrix}
X_{11} & X_{21} & X_{31} \\
X_{12} & X_{22} & X_{32} \\
\end{bmatrix}
\]

\[
W = X^t X = \begin{bmatrix}
X_{11}^2 + X_{21}^2 + X_{31}^2 & X_{11}X_{12} + X_{21}X_{22} + X_{31}X_{33} \\
X_{12}X_{11} + X_{22}X_{21} + X_{32}X_{31} & X_{12}^2 + X_{22}^2 + X_{32}^2
\end{bmatrix}
\]

(NxN) COVARIANCE MATRIX (unnormalized)

[borrowed from S.N. Majumdar, “Top eigenvalue of a random matrix: a tale of tails.”]
Principal Component Analysis

Consider N students and $M = 2$ subjects (phys. and math.)

$X \rightarrow (N \times 2)$ matrix and $W = X^tX \rightarrow 2 \times 2$ matrix

\[
\begin{align*}
\text{diagonalize} & \quad w = X^tX \longrightarrow [\lambda_1, \lambda_2] \\
\text{If} & \quad \lambda_1 \gg \lambda_2 \quad \text{strongly correlated}
\end{align*}
\]

\[
\begin{align*}
\text{diagonalize} & \quad w = X^tX \longrightarrow [\lambda_1, \lambda_2] \\
\text{If} & \quad \lambda_1 \sim \lambda_2 \quad \text{random (weak correlation)}
\end{align*}
\]

data compression via ‘Principal Component Analysis’ (PCA)

\[\rightarrow\] practical method for image compression in computer vision

Null model \rightarrow random data: $X \rightarrow$ random $(M \times N)$ matrix

$\rightarrow W = X^tX \rightarrow$ random $N \times N$ matrix (Wisshart, 1928)
\[\mathbf{G}_{ij} \sim \mathcal{N}(0, 1) \]

\[\mathbf{W} = \mathbf{G} \mathbf{G}^\dagger \]
Debate: is the bulk of the stock market correlation matrix just pure noise?
Multipath Wireless Channels

- Multipath signal propagation over spatially distributed paths due to signal scattering from multiple objects
 - Necessitates statistical channel modeling
 - Accurate and analytically tractable \Rightarrow Understanding the physics!

- Fading - fluctuations in received signal strength
- Diversity - statistically independent modes of communication

Capacity of Multi-antenna Gaussian Channels

İ. Emre Telatar*
which the received vector \(y \in \mathbb{C}^r \) depends on the transmitted vector \(x \in \mathbb{C}^t \) via

\[
y = H x + n
\]

(1)

where \(H \) is a \(r \times t \) complex matrix and \(n \) is zero-mean complex Gaussian noise with
We will consider several scenarios for the matrix H:

1. H is deterministic.

2. H is a random matrix (for which we shall use the notation H), chosen according to a probability distribution, and each use of the channel corresponds to an independent realization of H.

3. H is a random matrix, but is fixed once it is chosen.

related to the “mutual information” between the senders and the receivers

4.2 Evaluation of the Capacity

Although the expectation $\mathcal{E} [\log \det (I_r + (P/t) HH^\dagger)]$ is easy to evaluate for either small or large t, its evaluation gets rather involved for t much larger than 1. We will

Wishart matrices!!
Techniques
Techniques

- Edwards-Jones formula
- Moments method
- Andreief formula
- Orthogonal Polynomials
- Coulomb gas
Techniques

Independent Entries
- Edwards-Jones formula
- Moments method

Rotational Invariance
- Andreief formula
- Orthogonal Polynomials
- Coulomb gas
Edwards-Jones formula (1976)

\[\mathcal{P}(H_{11}, \ldots, H_{NN}) \]

\[\rho_N(\lambda) = \left\langle \frac{1}{N} \sum_{i=1}^{N} \delta(\lambda - \lambda_i) \right\rangle \]

(typically \[N \to \infty \])

The eigenvalue spectrum of a large symmetric random matrix

S F Edwards†‡ and Raymund C Jones§
† Science Research Council, State House, High Holborn, London WC1R 4TA, UK
§ Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT, UK

Received 21 May 1976

Abstract. A new and straightforward method is presented for calculating the eigenvalue spectrum of a large symmetric square matrix each of whose upper triangular elements is described by a Gaussian probability density function with the same mean and variance. Using the \(n \to 0 \) method, we derive the semicircular eigenvalue spectrum when the mean of each element is zero and show that there is a critical finite mean value above which a single eigenvalue splits off from the semicircular continuum of eigenvalues.
Density of states of a sparse random matrix

G. J. Rodgers
Department of Theoretical Physics, The University, Manchester, M13 9PL, United Kingdom

A. J. Bray*
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
(Received 28 April 1987)

The density of states $\rho(\mu)$ of an $N \times N$ real, symmetric, random matrix with elements 0, ±1 is calculated in the limit $N \to \infty$ as a function of the average “connectivity” p, i.e., of the mean number of nonzero elements per row. For $p \to \infty$, the Wigner semicircular distribution is recovered. For finite p the distribution has tails extending beyond the semicircle, with $\rho(\mu) \sim (ep/\mu^2)^{\mu^2}$ for $\mu^2 \to \infty$. Applications to the theory of “Griffiths singularities” in dilute magnets are discussed.

Tomorrow....
We can convert a delta function into a rational function using the Sokhotski-Plemelj identity.
Next, we can convert a rational function into a logarithm.
We have a “trace of log” which can be converted into a “log of det”

$$\rho_N(\lambda) = \frac{1}{\pi N} \lim_{\epsilon \to 0} \text{Im} \frac{\partial}{\partial \lambda} \left\langle \sum_{i=1}^{N} \ln(\lambda - i\epsilon - \lambda_i) \right\rangle$$

$$\sum_{i=1}^{N} \ln(\lambda - i\epsilon - \lambda_i) = \ln \det((\lambda - i\epsilon) I_N - H)$$

Link between eigenvalues and entries!
The determinant to the power -1/2 can be traded for a Gaussian integral!

\[
\rho_N(\lambda) = \frac{-2}{\pi N} \lim_{\varepsilon \to 0} \text{Im} \frac{\partial}{\partial \lambda} \left\langle \ln \left[\det((\lambda - i\varepsilon)I_N - H) \right]^{-1/2} \right\rangle
\]

where now we can use

\[
[\det A]^{-1/2} = \frac{1}{(2\pi)^{N/2}} \int_{-\infty}^{\infty} \prod_{j=1}^{N} dx_j \exp \left(-\frac{1}{2} \sum_{i,j=1}^{N} x_i A_{ij} x_j \right)
\]
The log of an integral is a bit inconvenient...

\[
\ln z = \lim_{n \to 0} \frac{z^n - 1}{n}
\]

Replica Trick

\[
\left(\frac{1}{(2\pi)^{N/2}} \int_{-\infty}^{\infty} \prod_{j=1}^{N} dx_j \exp \left(-\frac{1}{2} \sum_{i,j=1}^{N} x_i A_{ij} x_j \right) \right)^n =
\]

\[
\frac{1}{(2\pi)^{Nn/2}} \int_{-\infty}^{\infty} \prod_{j=1}^{N} \prod_{a=1}^{n} dx_{ja} \exp \left(-\frac{1}{2} \sum_{i,j,a} x_{ia} A_{ij} x_{ja} \right)
\]

\text{n copies of the original integral ...}
In summary...

\[
\rho_N(\lambda) = \frac{-2}{\pi N} \lim_{\varepsilon \to 0} \text{Im} \frac{\partial}{\partial \lambda} \left[\lim_{n \to 0} \left(\frac{I_\varepsilon(n, \lambda) - 1}{n} \right) \right]
\]

where...

\[
I_\varepsilon(n, \lambda) := \frac{1}{(2\pi)^N n^{N/2}} \int \prod_{i,j=1}^{N} dH_{ij} \mathcal{P}(H_{11}, \ldots, H_{NN}) \int_{-\infty}^{\infty} \prod_{j=1}^{N} \prod_{a=1}^{n} dx_{ja} \exp \left(-\frac{1}{2} \sum_{i,j,a} x_{ia} [(\lambda - i\varepsilon)\delta_{ij} - H_{ij}] x_{ja} \right)
\]

Typically can be evaluated for \(N \to \infty\)

“Shaky” interplay with replica limit...
SUMMARY

• Eigenvalues of random matrices: **strongly correlated**

• Real spectrum: independent entries or rotational invariance

• Many more analytical tools for invariant models

• “Semicircle” law (quite robust) and level repulsion (quite universal)

• Modern applications (Riemann zeta, non-intersecting Brownian paths, finance, telecommunications....)

• Edwards-Jones formula for the average density of states
Simplified summary
Weyl's lemma

$$\mathcal{P}(H_{11}, \ldots, H_{NN}) \rightarrow \mathcal{P}(\lambda_1, \ldots, \lambda_N)$$

$$\mathcal{P}[H] = \phi (\text{Tr}H, \ldots, \text{Tr}H^N)$$

$$\mathcal{P}(\lambda_1, \ldots, \lambda_N) = C_{N,\beta\phi} \left(\sum_{i=1}^{N} \lambda_i, \ldots, \sum_{i=1}^{N} \lambda_i^N \right) \prod_{j<k} |\lambda_j - \lambda_k|^\beta$$
Rotationally Invariant Models

\[P_\beta(\lambda_1, \ldots, \lambda_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{1}{2} \sum_{i=1}^{N} \lambda_i^2} \prod_{j<k} |\lambda_j - \lambda_k|^\beta \]

\[\beta = 1, 2, 4 \]

Confinement (non-universal)

Level Repulsion (universal)

Strongly Correlated Random Variables!!
Distribution of largest eigenvalue

\[\mathbb{P}_N[\lambda_{\text{max}} < x] = \int_x^x \cdots \int_x^x d\lambda_1 \cdots d\lambda_N \mathcal{P}(\lambda_1, \ldots, \lambda_N) \]

Strongly Correlated Random Variables!!
One step back: i.i.d. random variables

\{X_1, \ldots, X_N\} \text{i.i.d. sampled from } p(x)

- Law of Large Number (LLN)

\[\bar{X}_n = \frac{1}{n}(X_1 + \cdots + X_n) \]
converges to the expected value
\[\bar{X}_n \to \mu \quad \text{for} \quad n \to \infty \]
where \(X_1, X_2, \ldots\) is an infinite sequence of i.i.d. integrable random variables with expected value \(E(X_1) = E(X_2) = \ldots = \mu\).

- Central Limit Theorem (CLT)

the law of large numbers, \(S_n/n \to \mu\).\footnote{If in addition each \(X_i\) has finite variance \(\sigma^2\), then by the central limit theorem,}
\[\frac{S_n - n\mu}{\sqrt{n}} \to \xi, \]
where \(\xi\) is distributed as \(N(0, \sigma^2)\). This provides values of the first two constants in the informal expansion \(S_n \approx \mu n + \xi \sqrt{n}\).
One step back: i.i.d. random variables

\[\{X_1, \ldots, X_N\} \] i.i.d. sampled from \(p(x) \)

- Law of Large Number (LLN)
- Central Limit Theorem (CLT)

They concern the \textit{sum}

What about the \textbf{maximum}?

Extreme Value Theory
i.i.d. random variables: the threefold way for the maximum

\[X_{\text{max}} = \max_i \{X_i\} \]

Only 3 universality classes, depending on the tails of \(p(x) \):

- **Gumbel**: fast decaying
- **Fréchet**: power laws
- **Weibull**: compact support

[Fisher–Tippett–Gnedenko theorem]
\[
\lim_{N \to \infty} P\left[\frac{X_{\max} - a_N}{b_N} \leq x \right] = F_1(x) = \exp(-\exp(-x))
\]
\[
\lim_{N \to \infty} \mathbb{P}\left[\frac{X_{\max} - a_N}{b_N} \leq x \right] = F_{\text{Fréchet}}(x) = \begin{cases}
0 & x < 0 \\
\frac{1}{x^\gamma} & x \geq 0
\end{cases}
\]
What about Strongly Correlated Random Variables?
Largest Eigenvalue Gaussian Ensemble

Tracy-Widom distribution for λ_{max}

- $\langle \lambda_{max} \rangle = \sqrt{2N}$; typical fluctuation: $|\lambda_{max} - \sqrt{2N}| \sim N^{-1/6}$ (small)
- typical fluctuations are distributed via Tracy-Widom (1994):
 - cumulative distribution:
 \[\text{Prob}[\lambda_{max} \leq t, N] \to F_\beta \left(\sqrt{2N^{1/6}}(t - \sqrt{2N}) \right) \]
 - Prob. density (pdf): $f_\beta(z) = dF_\beta(z)/dz$
 - $F_\beta(z) \to$ obtained from solution of Painlevé-II equation

[borrowed from S.N. Majumdar, "Top eigenvalue of a random matrix: a tale of tails."]
Tracy-Widom distribution for λ_{max}

- Tracy-Widom density $f_\beta(x)$ depends explicitly on β.
- Asymptotics: $f_\beta(x) \sim \exp \left[-\frac{\beta}{24} |x|^3 \right] \quad \text{as} \quad x \to -\infty$

$\sim \exp \left[-\frac{2\beta}{3} x^{3/2} \right] \quad \text{as} \quad x \to \infty$

Applications: Growth models, Directed polymer, Sequence Matching
(Baik, Deift, Johansson, Prahofer, Spohn, Johnstone,.....)

A recent 'simpler' derivation of Tracy-Widom for $\beta = 2$ → Majumdar 2011]
Tracy-Widom distribution

\[\lambda_{\text{max}} \approx \sqrt{2N} + a_\beta N^{-1/6} \chi \]

\[\mathcal{P}(\chi \leq x) = F_\beta(x) \]

\[F_2(x) = \exp \left[- \int_x^\infty (z - x)q^2(z)dz \right] \]

\[q'' = 2q^3 + zq \]

Painlevé II
Painlevé transcendents and their appearance in physics

\[y'' = F(x, y, y') \]

Rational function of its arguments
All movable singularities are restricted to poles
(no movable branch points)

E. Picard (1889)

(a) linear 2nd order DEs
(b) Weierstrass DE
(c) Riccati DE

\[(y')^2 = 4y^3 - g_2 y - g_3 \]

\[y' = a(x) y^2 + b(x) y + c(x) \]

P. Painlevé (1900,1902)
B. Gambier (1905)
R. Fuchs (1910)

Painlevé equations P₁ - P VI
nonlinear special functions
In the theory of ordinary differential equations, a movable singularity is a point where the solution of the equation behaves badly and which is "movable" in the sense that its location depends on the initial conditions of the differential equation.\footnote{1} Suppose we have an ordinary differential equation in the complex domain. Any given solution $y(x)$ of this equation may well have singularities at various points (i.e. points at which it is not a regular holomorphic function, such as branch points, essential singularities or poles). A singular point is said to be movable if its location depends on the particular solution we have chosen, rather than being fixed by the equation itself.

For example the equation

$$\frac{dy}{dx} = \frac{1}{2y}$$

has solution $y = \sqrt{x - c}$ for any constant c. This solution has a branchpoint at $x = c$, and so the equation has a movable branchpoint (since it depends on the choice of the solution, i.e. the choice of the constant c).

It is a basic feature of linear ordinary differential equations that singularities of solutions occur only at singularities of the equation, and so linear equations do not have movable singularities.

When attempting to look for 'good' nonlinear differential equations it is this property of linear equations that one would like to see: asking for no movable singularities is often too stringent, instead one often asks for the so-called Painlevé property: 'any movable singularity should be a pole', first used by Sofia Kovalevskaya.
Painlevé transcendents and their appearance in physics

- 2D Ising model

\[H_{\text{int}}^{(2\text{D})} = -J \sum_{j,k} (\sigma_{j,k} \sigma_{j,k+1} + \sigma_{j,k} \sigma_{j+1,k}) \]

T. Wu, B. McCoy, C. Tracy, and E. Barouch (1976)

\[\left\langle \sigma_{00} \sigma_{MN} \right\rangle \bigg|_{T \to T_c^\pm} = F^{\pm} \left(\left[\sigma_{\text{III}} \right]; r = \frac{R}{\xi(T)} \right) \]

\[\xi(T) = \frac{(T_c/4J)}{1 - T/T_c} \]

\[\tanh(J/T_c) = \sqrt{2} - 1 \]
Painlevé transcendents and their appearance in physics

- Impenetrable Bose gas \(g \rightarrow \infty \)

\[
H = - \sum_{j=1}^{N} \frac{\partial^2}{\partial z_j^2} + g \sum_{i<j} \delta(z_i - z_j)
\]

\[
\rho_N(x) = N \int_0^L \cdots d z_N \Psi^* (x, z_2, \cdots, z_N) \Psi (0, z_2, \cdots, z_N)
\]

\[
\rho_{\infty}(x) = \lim_{N \to \infty} \rho_N(x) \bigg|_{L=N} = \exp \left(\int_0^{\pi x} \frac{dt}{t} \sigma_V(t) \right)
\]

\(\sigma_{PV} \)
Level-Spacing Distributions and the Airy Kernel

Craig A. Tracy1,*, Harold Widom2,**

1 Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, CA 95616, USA
2 Department of Mathematics, University of California, Santa Cruz, CA 95064, USA

Received: 1 December 1992/in revised form: 24 March 1993
Instanton Induced Large N Phase Transitions in Two and Four Dimensional QCD

David J. Gross
gross@puhep1.princeton.edu

and

Andrei Matytsin
matytsin@puhep1.princeton.edu

The double scaling limit...

to be $C = D = 0$.

Therefore, $f_1(x)$ obeys the Painleve II equation

$$f_1'' - 4xf_1 - \frac{\pi^2}{2} f_1^3 = 0.$$ \hspace{1cm} (5.15)

Now we are in a position to evaluate the free energy in the double scaling limit.
It is a well-known result that $U(N)$ lattice QCD in two dimensions with Wilson’s action [54] exhibits a third order phase transition in the large N limit [23, 53]. This is shown by forming the partition function for the plaquettes, which factorizes as a product of partition functions for each individual plaquette. The latter is identified with a zero-dimensional unitary matrix model having partition function given by

$$G_N(b) := \left< e^{bN \text{Tr}(U+U^\dagger)} \right>_{U \in U(N)},$$

where the matrices $U \in U(N)$ are chosen with Haar measure and b is the scaled coupling.

The matrix integral [1] depends only on the N eigenvalues of U, and in terms of these variables it can be written

$$G_N(b) = \frac{1}{(2\pi)^N N!} \int_0^{2\pi} d\theta_1 \cdots \int_0^{2\pi} d\theta_N \prod_{i=1}^{N} e^{2bN \cos \theta_i} \prod_{1 \leq j < k \leq N} |e^{i\theta_k} - e^{i\theta_j}|^2.$$

This can be interpreted as a partition function for a classical gas of charged particles, confined to the unit circle, and repelling via logarithmic pair potential $-(1/2) \log |e^{i\theta} - e^{i\phi}|$ at the inverse temperature $\beta = 2$. The charges are also subject to the extensive one-body potential $bN \cos \theta$. In the form [2] the $N \to \infty$ limit can be computed with the result [23]

$$\lim_{N \to \infty} \frac{1}{N^2} \log G_N(b) = \begin{cases} b^2, & 0 < b < \frac{1}{2} \\ 2b - \frac{3}{4} - \frac{1}{2} \log 2b, & b > \frac{1}{2} \end{cases}$$

which is indeed discontinuous in the third derivative at $b = 1/2$.
It is a well-known result that $U(N)$ lattice QCD in two dimensions with Wilson’s action $[54]$ exhibits a third order phase transition in the large N limit $[23, 53]$. This is shown by forming the partition function for the plaquettes, which factorizes as a product of partition functions for each individual plaquette. The latter is identified with a zero-dimensional unitary matrix model having partition function given by

$$G_N(b) := \left\langle e^{bN \text{Tr}(U+U^\dagger)} \right\rangle_{U \in U(N)},$$

where the matrices $U \in U(N)$ are chosen with Haar measure and b is the scaled coupling.

The matrix integral $[1]$ depends only on the N eigenvalues of U, and in terms of these variables it can be written

$$G_N(b) = \frac{1}{(2\pi)^N N!} \int_0^{2\pi} d\theta_1 \cdots \int_0^{2\pi} d\theta_N \prod_{i=1}^N e^{2bN \cos \theta_i} \prod_{1 \leq i < k \leq N} |e^{i\theta_k} - e^{i\theta_j}|^2.$$ (2)

a well-defined scaling limit. It turns out that if one zooms in the neighbourhood of the critical point $b = 1/2$ and magnifies it by a factor $N^{2/3}$, i.e., one takes the limit $\frac{1}{2} \to 0$, $N \to \infty$, but keeping the product $t = 2^{4/3}(1/2 - b)N^{2/3}$ fixed, subject to the extensive one-body potential $bN \cos \theta$. In the form $[2]$ the $N \to \infty$ limit can be computed with the result $[23]$.

$$\lim_{N \to \infty} \frac{1}{N^2} \log G_N(b) = \begin{cases} b^2, & 0 < b < \frac{1}{2} \\ 2b - \frac{3}{4} - \frac{1}{2} \log 2b, & b > \frac{1}{2}, \end{cases}$$

which is indeed discontinuous in the third derivative at $b = 1/2$.
Non-intersecting Brownian motion paths

- Take n independent 1-dimensional Brownian motions with time in $[0, 1]$ conditioned so that:
 - All paths start and end at the same point.
 - The paths do not intersect at any intermediate time.

- Remarkable fact: At any intermediate time the positions of the paths have exactly the same distribution as the eigenvalues of an $n \times n$ GUE matrix (up to a scaling factor).

- Positions of five non-intersecting Brownian paths behave the same as the eigenvalues of a 5×5 GUE matrix

- This interpretation is basic for the connection of random matrix theory with growth models of statistical physics.

Introduction. Since the pioneering work of de Gennes [1], followed up by Fisher [2], the subject of vicious (non-intersecting) random walkers has attracted a lot of interest among physicists. It has been studied in the context of wetting and melting [2], networks of polymers [3] and fibrous structures [1], persistence properties in nonequilibrium systems [4] and stochastic growth models [5, 6]. There also exist connections between the

PHYSICAL REVIEW E VOLUME 52, NUMBER 6 DECEMBER 1995

Vicious walkers and directed polymer networks in general dimensions

J. W. Essam
Department of Mathematics, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom

A. J. Guttmann
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

(Received 2 May 1995)
Maximal height of watermelons with a wall

- Cumulative distribution of the maximal height

\[F_N(M) = \Pr [x_N(\tau) \leq M, \forall 0 \leq \tau \leq 1] = \int_0^1 d\tau M \int_0^M dx P_N(x, \tau_M) \]

- Path integral for free fermions

\[F_N(M) = \frac{A_N}{M^{2N^2 + N}} \sum_{n_1, \ldots, n_N = 0}^{+\infty} \prod_{i=1}^{N} n_i^2 \prod_{1 \leq j < k \leq N} (n_j^2 - n_k^2)^2 e^{-\frac{\pi^2}{2M^2} \sum_{i=1}^{N} n_i^2} \]

After centering and scaling, it converges to \(F_1 \) (GOE)
Correspondence between YM$_2$ on the sphere and watermelons

- Partition function of YM$_2$ on the sphere with gauge group $\text{Sp}(2N)$

$$\mathcal{Z}_M = \mathcal{Z}(A; \text{Sp}(2N))$$

$$\mathcal{Z}(A; \text{Sp}(2N)) = \hat{c}_N e^{A(N+\frac{1}{2}) \frac{N+1}{12}} \sum_{n_1, \ldots, n_N=0}^{\infty} \left(\prod_{j=1}^{N} n_j^2 \right) \prod_{i<j} \left(n_i^2 - n_j^2 \right)^2 e^{-\frac{A}{4N} \sum_{j=1}^{N} n_j^2}$$

- Cumulative distribution of the maximal height of watermelons with a wall

$$F_N(M) = \frac{A_N}{M^{2N^2+N}} \sum_{n_1, \ldots, n_N=0}^{+\infty} \left(\prod_{j=1}^{N} n_j^2 \right) \prod_{i<j} \left(n_i^2 - n_j^2 \right)^2 e^{-\frac{\pi^2}{2M^2} \sum_{j=1}^{N} n_j^2}$$

$$\propto \mathcal{Z} \left(A = \frac{2\pi^2 N}{M^2}; \text{Sp}(2N) \right)$$

[Forrester et al. 2011]
Large N limit of YM$_2$ and consequences for $F_N(M)$

- Weak-strong coupling transition in YM$_2$
 - Durhuus-Olesen '81,
 - Douglas-Kazakov '93

\[M^2 = \frac{2\pi^2 N}{A} \]

- Critical region
- Weak coupling
- Strong coupling

Diagram with axes $F_N(M)$, N, M, and A, showing the transition regions and coupling strengths.
Typical vs. Atypical

\[P(\lambda_{\text{max}} = t) \approx \begin{cases} \exp \left(-\beta N^2 \psi_\beta \left(\frac{t}{\sqrt{N}} \right) + \ldots \right) & \text{for } t < \sqrt{2N} \text{ and } |t - \sqrt{2N}| \approx O(N) \\ \frac{1}{a_\beta N^{-1/6}} F'_\beta \left(\frac{t-\sqrt{2N}}{a_\beta N^{-1/6}} \right) & \text{for } |t - \sqrt{2N}| \approx O(N^{-1/6}) \\ \exp \left(-\beta N \psi_\beta \left(\frac{t}{\sqrt{N}} \right) + \ldots \right) & \text{for } t > \sqrt{2N} \text{ and } |t - \sqrt{2N}| \approx O(N) \end{cases} \]

\[\lim_{N \to \infty} \frac{1}{\beta N^2} \ln P(\lambda_{\text{max}} = z\sqrt{N}) = -\psi_- (z) \quad \text{for } z < \sqrt{2} \]

\[\lim_{N \to \infty} \frac{1}{\beta N} \ln P(\lambda_{\text{max}} = z\sqrt{N}) = -\psi_+ (z) \quad \text{for } z > \sqrt{2} \]
Applications of TW distribution
FIG. 1 (color online). Growing DSM2 cluster. (a) Images. Indicated below is the elapsed time after the emission of laser pulses. (b) Snapshots of the interfaces taken every 5 s in the range $2 \leq t \leq 27$ s. The gray dashed circle shows the mean radius of all the droplets at $t = 27$ s. The coordinate x at this time is defined along this circle.
Dynamic Scaling of Growing Interfaces

Mehran Kardar

Physics Department, Harvard University, Cambridge, Massachusetts 02138

Giorgio Parisi

Physics Department, University of Rome, I-00173 Rome, Italy

and

Yi-Cheng Zhang

Physics Department, Brookhaven National Laboratory, Upton, NY 11973

(Received 12 November 1985)

A model is proposed for the evolution of the profile of a growing interface. Growth is solved exactly, and exhibits nontrivial relaxation patterns. The solution is calculated by dynamic renormalization-group techniques and by mappings to the random directed-polymer problem. The exact dynamic scaling form of the height profile of the interface is in excellent agreement with previous numerical simulations in one and more dimensions.

The interface profile, suitably coarse-grained, is described by a height $h(x,t)$. As usual, it is convenient to ignore overhangs so that h is a single-valued function of x. The simplest nonlinear Langevin equation for a local growth of the profile is given by

$$\frac{\partial h}{\partial t} = \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta(x,t).$$

The first term on the right-hand side describes relaxation of the interface by a surface tension ν. The second term is the lowest-order nonlinear term that can appear in the interface growth equation, and is justified later on with the Eden model as an example. Edwards and Wilkinson have studied Eq. (1) without the nonlinear term, but we demonstrate that such a term is necessary, and responsible for the unusual properties of the growing interface. Higher-order terms can also be present, but they are irrelevant, and will not modify the universal scaling properties. The noise $\eta(x,t)$ has a Gaussian distribution with $\langle \eta(x,t) \rangle = 0$, and

$$\langle \eta(x,t) \eta(x',t') \rangle = 2D \delta^d(x-x') \delta(t-t').$$
One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality

Tomohiro Sasamoto*
Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan

Herbert Spohn†
Zentrum Mathematik and Physik Department, TU München, D-85747 Garching, Germany
(Received 15 February 2010; revised manuscript received 10 May 2010; published 11 June 2010)

We report on the first exact solution of the Kardar-Parisi-Zhang (KPZ) equation in one dimension, with an initial condition which physically corresponds to the motion of a macroscopically curved height profile. The solution provides a determinantal formula for the probability distribution function of the height $h(x, t)$ for all $t > 0$. In particular, we show that for large t, on the scale $t^{1/3}$, the statistics is given by the Tracy-Widom distribution, known already from the Gaussian unitary ensemble of random matrix theory. Our solution confirms that the KPZ equation describes the interface motion in the regime of weak driving force. Within this regime the KPZ equation details how the long time asymptotics is approached.
“Are Tracy and Widom in Your Local Telephone Directory?”

Ryan Witko
Advisor: Percy Deift
Definition:

The longest increasing (contiguous) subsequence of a given sequence is the subsequence of increasing terms containing the largest number of elements. For example, the longest increasing subsequence of the permutation \(\{6, 3, 4, 8, 10, 5, 7, 1, 9, 2\} \) is \(\{3, 4, 8, 10\} \).

It can be coded in Mathematica as follows.

```mathematica
<<Combinatorica
IncreasingSubsequence[p_] := 
  Select[Subsequences[p], Length[#1] >= Length[#2] &]
```

We broke the 647,028 entries into successive samples each containing \(N \) entries.

Jinho Baik, Kurt Johansson and Percy Deift showed that as \(N \to \infty \)

\[
\text{Prob} \left(\frac{\ell_N - 2 \sqrt{N}}{N^{1/6}} \leq t \right) \to F(t)
\]

The function \(F(t) \) was shown by Craig Tracy and Harold Widom to be the distribution of the largest eigenvalue of a random matrix in the Gaussian Unitary Ensemble (GUE). It
$G_{ij} \sim \mathcal{N}(0, 1)$

$G \times G = W$

$W = GG^\dagger$
Recently, Majumdar and Vergassola (MV) calculated the probability of large deviations of the maximal eigenvalue \([12-14]\) above the mean and Pierpaolo, Majumdar, and Bohigas (PMB) calculated below the mean. The MV and the PMB distributions were numerically confirmed, but so far eluded experimental demonstration.
Typical vs. Atypical

Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices

Satya N. Majumdar and Massimo Vergassola

1Laboratoire de Physique Théorique et Modèles Statistiques (UMR 8626 du CNRS), Université Paris-Sud, Bâtiment 100, 91405 Orsay Cedex, France
2Institut Pasteur CNRS URA 2171, 75772 Paris 15, France

(Received 14 November 2008; published 12 February 2009)

Digital Object Identifier (DOI) 10.1007/s004400001115

Aging of spherical spin glasses

\[\mathcal{P}(\lambda_{\text{max}} = t) \approx \begin{cases}
\exp \left(-\beta N^2 \psi_- \left(\frac{t}{\sqrt{N}} \right) + \ldots \right) & \text{for } t < \sqrt{2N} \text{ and } |t - \sqrt{2N}| \approx \mathcal{O}(N) \\
\frac{1}{a_\beta N^{-1/6}} F'_\beta \left(\frac{t - \sqrt{2N}}{a_\beta N^{-1/6}} \right) & \text{for } |t - \sqrt{2N}| \approx \mathcal{O}(N^{-1/6}) \\
\exp \left(-\beta N \psi_+ \left(\frac{t}{\sqrt{N}} \right) + \ldots \right) & \text{for } t > \sqrt{2N} \text{ and } |t - \sqrt{2N}| \approx \mathcal{O}(N)
\end{cases} \]

\[
\lim_{N \to \infty} \frac{1}{\beta N^2} \ln \mathcal{P}(\lambda_{\text{max}} = z\sqrt{N}) = -\psi_-(z) \quad \text{for } z < \sqrt{2}
\]
\[
\lim_{N \to \infty} \frac{1}{\beta N} \ln \mathcal{P}(\lambda_{\text{max}} = z\sqrt{N}) = -\psi_+(z) \quad \text{for } z > \sqrt{2}
\]
Rare (extreme, atypical) fluctuations: large deviations
A simple example of large deviation tails

- Let \(M \rightarrow \) no. of heads in \(N \) tosses of an unbiased coin
- Clearly \(P(M, N) = \binom{N}{M} 2^{-N} \ (M = 0, 1, \ldots, N) \rightarrow \) binomial distribution

 with mean= \(\langle M \rangle = \frac{N}{2} \) and variance=\(\sigma^2 = \langle (M - \frac{N}{2})^2 \rangle = \frac{N}{4} \)

- Typical fluctuations \(M - \frac{N}{2} \sim O(\sqrt{N}) \) are well described
 by the Gaussian form: \(P(M, N) \sim \exp \left[-\frac{2}{N} (M - \frac{N}{2})^2 \right] \)

- Atypical large fluctuations \(M - \frac{N}{2} \sim O(N) \) are not described by
 Gaussian form

- Setting \(M/N = x \) and using Stirling’s formula \(N! \sim N^{N+1/2} e^{-N} \) gives

 \[P(M = Nx, N) \sim \exp \left[-N \Phi(x) \right] \quad \text{where} \]

 \[\Phi(x) = x \log(x) + (1 - x) \log(1 - x) + \log 2 \rightarrow \text{large deviation function} \]

- \(\Phi(x) \rightarrow \text{symmetric} \) with a minimum at \(x = 1/2 \) and
 for small arguments \(|x - 1/2| << 1, \ \Phi(x) \approx 2(x - 1/2)^2 \)

 \(\rightarrow \text{recovers the Gaussian form near the peak} \)
For the company to be successful over a certain period of time (preferably many months), the total earning should exceed the total claim. Thus to estimate the premium you have to ask the following question:

"What should we choose as the monthly premium q such that over N months the sum of the claims is less than Nq?"

Cramér gave a solution to this question for i.i.d. random variables...
A Trivial Problem

DIAGONAL MATRIX

\[
\begin{bmatrix}
 x_{11} & 0 & \cdots & 0 \\
 0 & x_{22} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & x_{NN}
\end{bmatrix}
\]

\[
\Pr[x_{ii} = x] = (2\pi)^{-1/2} \exp[-x^2/2]
\]

\[
\text{GAUSSIAN}
\]

\[
\text{N Eigenvalues: } \lambda_i = x_{ii} \rightarrow \text{Independent}
\]

\[
P_N = \Pr[\lambda_1 \leq 0, \lambda_2 \leq 0, \ldots, \lambda_N \leq 0] = 2^{-N} = \exp[-(\ln 2) N]
\]
A Nontrivial Problem

REAL SYMMETRIC MATRIX \((N \times N)\)

\[
X = \begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1N} \\
 x_{21} & x_{22} & \cdots & x_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{N1} & \cdots & \cdots & x_{NN}
\end{pmatrix}
\]

GAUSSIAN

\[
\Pr[X] = \exp[-\frac{1}{2} \text{Tr}(X^2)]
\]

\(N\) eigenvalues: \(\lambda_1, \lambda_2, \ldots, \lambda_N\)

\(\rightarrow\) strongly correlated

\(P_N = \Pr[\lambda_1 \leq 0, \lambda_2 \leq 0, \ldots, \lambda_N \leq 0] = \Pr[\lambda_{\text{max}} \leq 0] = ?\)

[R.M. May, Nature, 238, 413 (1972) — Ecosystems]
[Cavagna et. al. 2000, Fyodorov 2004, — Glassy systems]
$N = 5$

$$
\begin{pmatrix}
0.5377 & 0.2631 & -1.8044 & 0.3286 & 0.4951 \\
0.2631 & -0.4336 & 1.6888 & 1.7271 & 0.7810 \\
-1.8044 & 1.6888 & 0.7254 & 0.7133 & 0.7160 \\
0.3286 & 1.7271 & 0.7133 & 1.4090 & 1.5237 \\
0.4951 & 0.7810 & 0.7160 & 1.5237 & 0.4889
\end{pmatrix}
$$

$\vec{\lambda} = [-2.4341, -0.8386, -0.5203, 2.2594, 4.2610]$

All the eigenvalues negative?? Can it ever happen?
Results for P_N:

- $P_N = \text{Prob}[\lambda_1 \leq 0, \lambda_2 \leq 0, \ldots, \lambda_N \leq 0] = ?$
- $N = 1$: $P_1 = 1/2 = 0.5$ (trivially)
- $N = 2$: $P_2 = \frac{2-\sqrt{2}}{4} = 0.146447..$
- $N = 3$: $P_3 = \frac{\pi-2\sqrt{2}}{4\pi} = 0.0249209..$

(Beltranis 2007, Dedieu & Malajovich, 2007)

Question: How does P_N decay for large N, i.e., $P_N \to ?$ as $N \to \infty$

- Based on numerics, Aazami & Easther (2006) predicted for large N:

 $$P_N \sim \exp[-\theta N^2] \quad \text{with} \quad \theta_{\text{num}} \approx 0.27$$

 \to very small probability \to RARE EVENT

Logarithmic equivalence

Applications?
Despite the approximation used to obtain equation (8), we have confirmed that the likelihood that all the eigenvalues of an $N \times N$ symmetric matrix have the same sign scales as e^{-cN^2}. The measured constant differs slightly from -0.25, although given the simplicity of our approximation the agreement is perhaps surprisingly good.

- Based on numerics, Aazami & Easther (2006) predicted for large N:
 \[P_N \sim \exp[-\theta N^2] \] with $\theta_{\text{num}} \approx 0.27$

 \[\rightarrow \text{very small probability} \rightarrow \text{RARE EVENT} \]

- Exact result: $\theta = \frac{1}{4} \ln(3) = 0.274653..$ (Dean and S.M., 2006)

 More generally, for $\beta = 1$ (GOE), $\beta = 2$ (GUE) and $\beta = 4$ (GSE)
 \[P_N \sim \exp[-\beta \theta N^2] \] for large N
A particle moving in a N-dim. landscape \(V(y_1, \ldots, y_N) \)

\[
\frac{dy_i}{dt} = -\nabla_{y_i} V
\]

Spin and structural glasses, Gaussian fields [Bray and Dean, 2006], String landscapes [Aazami and Easther, 2006], Random Energy Landscapes and Glass Transition [Fyodorov, 2004]...

Stationary points: maxima, minima and saddles

Hessian matrix

\[
H_{i,j} = \left[\frac{\partial^2 V}{\partial y_i \partial y_j} \right]
\]

Eigenvalues of Hessian matrix determine the nature of the stationary point
Examples:

• $N = 1$-dimensional surface: Hessian matrix $H = \frac{\partial^2 V}{\partial y^2}$

 If $\frac{\partial^2 V}{\partial y^2} < 0 \rightarrow$ Local Maximum; if $\frac{\partial^2 V}{\partial y^2} > 0 \rightarrow$ Local Minimum

• $N = 2$-dimensional surface: Hessian matrix $H \equiv \begin{pmatrix} \frac{\partial^2 V}{\partial y_1^2} & \frac{\partial^2 V}{\partial y_1 \partial y_2} \\ \frac{\partial^2 V}{\partial y_2 \partial y_1} & \frac{\partial^2 V}{\partial y_2^2} \end{pmatrix}$

 Two real eigenvalues: (λ_1, λ_2)

 If $\lambda_1 < 0$ and $\lambda_2 < 0 \rightarrow$ Local Maximum

 If $\lambda_1 > 0$ and $\lambda_2 > 0 \rightarrow$ Local Minimum

 $\lambda_1 < 0, \lambda_2 > 0 \quad \lambda_1 > 0, \lambda_2 < 0$ \rightarrow Saddle
Random Hessian Model

Draw the elements of the Hessian matrix independently at random

$$H_{i,j} = \left[\frac{\partial^2 V}{\partial y_i \partial y_j} \right]$$

It belongs to the GOE of random matrices

The probability that all the eigenvalues are positive (or negative) provides information about the number and nature of extremal points

Most of the stationary points are saddles!
Techniques
Techniques

- Edwards-Jones formula
- Moments method
- Andreief formula
- Orthogonal Polynomials
- Coulomb gas
Coulomb gas

\[
P_\beta(\lambda_1, \ldots, \lambda_N) = \frac{1}{Z_N} e^{-\frac{\beta}{2} \sum_{i=1}^{N} \lambda_i^2} \prod_{j<k} |\lambda_j - \lambda_k|^\beta = \frac{1}{Z_N} e^{-\beta \mathcal{H}(\vec{\lambda})}
\]

\[
\mathcal{H}(\vec{\lambda}) = \frac{1}{2} \sum_{i=1}^{N} \lambda_i^2 - \frac{1}{2} \sum_{j \neq k} \log |\lambda_j - \lambda_k|
\]

Canonical weight of an auxiliary thermodynamical system

Dyson?
If the density of the roots at λ is $\sigma(\lambda)$, the logarithm of the probability P is given by

$$\ln P(\lambda_1, \lambda_2, \ldots, \lambda_n) = \text{const} - \sum_i \frac{1}{2} \lambda_i^2 + \sum_{i<k} \ln |\lambda_i - \lambda_k|.$$

It can be approximated by the following functional of σ

$$[\sigma] = \text{const} - \frac{1}{2} \int d\lambda \lambda^2 \sigma(\lambda) + \frac{1}{2} \int d\lambda \int d\mu \sigma(\lambda) \sigma(\mu) \ln |\lambda - \mu|.$$

All integrations have to be extended from $-\infty$ to ∞ and σ is so normalized that

$$\int \sigma(\lambda) d\lambda = n.$$
\[\text{Prob}[\lambda_{\text{max}} \leq t, N] = \text{Prob}[\lambda_1 \leq t, \lambda_2 \leq t, \ldots, \lambda_N \leq t] = \frac{Z_N(t)}{Z_N(\infty)} \]

\[Z_N(t) = \int_{-\infty}^{t} \ldots \int_{-\infty}^{t} \left\{ \prod_i d\lambda_i \right\} \exp \left[-\frac{\beta}{2} \left\{ \sum_{i=1}^{N} \lambda_i^2 - \sum_{j \neq k} \log |\lambda_j - \lambda_k| \right\} \right] \]

denominator

\[\text{WALL} \rightarrow \]

\[\lambda \rightarrow t \]
Work on scale $\lambda \sim \sqrt{N}$ with large N

- Scaled variables: $x_i = \lambda_i / \sqrt{N}$; maximum x_i: $w = t / \sqrt{N}$

\[Z_N(w) \propto \int_{-\infty}^{w} \prod_{i} dx_i \exp \left[-\beta N^2 E(\{x_i\}) \right] \]

\[E(\{x_i\}) = \frac{1}{2N} \sum_{i} x_i^2 - \frac{1}{2N^2} \sum_{j \neq k} \log |x_j - x_k| \]

- Introduce counting function (scaled density): $f(x) = \frac{1}{N} \sum_i \delta(x - x_i)$

- discrete sum \rightarrow continuous integral:

\[E[f(x)] = \int_{-\infty}^{w} x^2 f(x) \, dx - \int_{\infty}^{w} \int_{-\infty}^{w} \ln |x - x'| f(x) f(x') \, dx \, dx' \]

\[Z_N(w) \propto \int \mathcal{D}f(x) \exp \left[-\beta N^2 \left\{ E[f(x)] + C \left(\int f(x) \, dx - 1 \right) \right\} \right] + O(N) \]

- for large N, minimize the action $S[f(x)] = E[f(x)] + C \left[\int f(x) \, dx - 1 \right]$

Saddle Point Method: $\frac{\delta S}{\delta f} = 0 \rightarrow f_w(x) \rightarrow$

\[Z_N(w) \sim \exp \left[-\beta N^2 S[f_w(x)] \right] \]
As we bring the wall from ∞

charge density $f_w(x)$ vs. x for different w

$w < \sqrt{2}$

$w > \sqrt{2}$

$w >> \sqrt{2}$

pushed Coulomb gas

$w = \sqrt{2} \rightarrow$ CRITICAL POINT
Saddle Point Solution

- saddle point $\frac{\delta S}{\delta f} = 0 \rightarrow$ singular integral Eq. for $f_w(x)$

- $x = \mathcal{P} \int_{-\infty}^{w} \frac{f_w(y) \, dy}{x - y}$ for $x \in [-\infty, w] \rightarrow$ Semi-Hilbert transform

\rightarrow Inverse electrostatic problem \rightarrow Given the potential x find the charge density $f_w(x)$ (though not quite!)

- General method for solving such singular integral equations \rightarrow Tricomi (1957)
Tricomi Solution

Assuming finite support of \(f(x) \) over \([a, b]\)

\[
U(x) = \mathcal{P} \int_a^b \frac{f(y) \, dy}{x - y} \quad \text{for} \quad x \in [a, b]
\]

• General solution (Tricomi, ’57):

\[
f(x) = -\frac{1}{\pi^2 \sqrt{(b-x)(x-a)}} \left[\mathcal{P} \int_a^b \frac{\sqrt{(b-x')(x'-a)}}{x'-x} \, U(x') \, dx' + B \right]
\]

for \(x \in [a, b] \)

where \(B \rightarrow \) arbitrary constant

• In our problem, \(U(x) = x \) and \(b = w \) (wall position) and we assume \(a = -L_1(w) \)
Exact Saddle Point Solution

- **Exact solution** [D. Dean and S.N. Majumdar, 2008]

\[
f_w(x) = \frac{\sqrt{x + L_1(w)}}{2\pi \sqrt{w - x}} [w + L_1(w) - 2x]
\]

where \(-L_1(w) \leq x \leq w\) and \(L_1(w) = \frac{[2\sqrt{w^2 + 6} - w]}{3}\)

- When \(w \to \infty\), \(L_1(w) \to \sqrt{2}\) and \(f_\infty(x) = \sqrt{2 - x^2}/\pi \to \text{semicircle}\)

\[f_\infty(x) \to \text{SEMICIRCLE}\]
Left large deviation function

\[
\text{Prob}[\lambda_{\text{max}} \leq t, N] = \frac{Z_N(t)}{Z_N(\infty)} \\
\sim \exp \left[-\beta N^2 \left\{ S[f_{w=t/\sqrt{N}}(x)] - S[f_\infty(x)] \right\} \right] \\
\sim \exp \left[-\beta N^2 \Phi_-(\frac{t}{\sqrt{N}}) \right]
\]

- where \(\Phi_- (w) \) (for \(w < \sqrt{2} \)) is the left large deviation function physically \(\Phi_- (w) = \) energy cost in pushing the Coulomb gas

\[
\Phi_- (w) = \frac{1}{108} \left[36w^2 - w^4 - (15w + w^3)\sqrt{w^2 + 6} \\
+ 27 \left(\ln(18) - 2 \ln(w + \sqrt{6 + w^2}) \right) \right] \quad \text{where} \quad w < \sqrt{2}
\]

- In particular, setting \(w = 0 \), \(P_N \sim \exp[-\beta\theta N^2] \)

\[
\theta = \Phi_- (0) = \frac{1}{4} \ln(3) = 0.274653\ldots
\]

[D. Dean and S.N. Majumdar, 2008]
Matching the left tail of Tracy-Widom distribution:

- \(\text{Prob}[\lambda_{\text{max}} \leq t, N] \sim \exp \left[-\beta N^2 \Phi_-(\frac{t}{\sqrt{N}}) \right] ; \quad w = \frac{t}{\sqrt{N}} \)

- When \(w \to \sqrt{2} \) from below, \(\to \) left tail of Tracy-Widom

- As \(w \to \sqrt{2} \) from below, \(\Phi_-(w) \to \frac{\left(\sqrt{2} - w\right)^3}{6\sqrt{2}} \Rightarrow \)

 \[
 \text{Prob}[\lambda_{\text{max}} \leq t, N] \approx \exp \left[-\frac{\beta}{24} \sqrt{2} N^{1/6} (t - \sqrt{2N})^3 \right]
 \]

- recovers the correct left tail of TW: \(F_\beta(x) \sim \exp[-\frac{\beta}{24} |x|^3] \) as \(x \to -\infty \)
Comparison with Simulations:

\[N \times N \text{ real Gaussian matrix (}\beta = 1\): } N = 10 \]

- circles → simulation points
- red line → Tracy-Widom
- blue line → left large deviation function (\(\times N^2 \))
- green line → right large deviation function (\(\times N \)).

[S.N. Majumdar and M. Vergassola, 2009]
SUMMARY

• Extreme Value Theory for i.i.d. and correlated random variables
• Tracy-Widom distribution: ubiquitous!
• Connection with field theories and models of statistical mechanics (non-intersecting BM, LIS...)
• Experimental verification (KPZ, coupled lasers...)
• Rare events and large deviations: the case of the largest eigenvalue with Coulomb gas technique