Redundancy-Aware Maximal Cliques

Jia Wang James Cheng Ada Wai-Chee Fu
Chinese University of Hong Kong
Maximal Cliques

• Input
 • Undirected graph $G = (V, E)$

• Maximal cliques
 • Clique: vertex set of a complete subgraph
 • Maximal: adding vertex makes it no clique
Classic problem

- MCE (Maximal Clique Enumeration)
 - exhaustive: finding set of ALL maximal cliques
Classic algorithm

• Algorithm: recursive search
 • Maintain *current clique* C & *candidate set* T
 • Recursion:
 • select vertex in T, add to C (a branch)
 • update T
Classic algorithm

• Example

![Diagram of a graph with nodes a, b, c, d, e, f, g, showing current clique and candidates.](image)
Problems of MCE

• **Usability**
 - overwhelmingly **large output**
 - cliques less useful due to **overlap**
 - full MCE no good or necessary
 - anomaly detection, exploration...

• **Speed**
 - exhaustive search of large space
 - can be *exponentially* many
Problems of MCE

• Instead we desire
 • I: compact representation – each result meaningful
 • II: preserved information – widely covering
 • I & II: a good **summary**, e.g.:
Notations

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Set of all maximal cliques</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>a subset of M (summary)</td>
<td></td>
</tr>
<tr>
<td>C/C'</td>
<td>current/last maximal clique</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>$\frac{</td>
<td>c \cap c'</td>
</tr>
</tbody>
</table>
A new notion

• Clique visibility
 • visibility of C given S: max ratio r of C covered by any C' in S
 • Denoted by $\text{vis}(C)$

• τ-visible summary
 • A summary S such that $\text{vis}(C) \geq \tau$ for each C in M

• Problem: τ-visible MCE
 • find a small τ-visible summary S of M

Have enabled redundancy reduction. Possibly faster too?

$\text{vis}(\{a, b, c, d, f\}) = 4/5$

$\text{vis}(\{b, d, f, g\}) = 3/4$

$S = \{\{a, b, d, e, f\}\}$
A naïve implementation

• In classic MCE
 • S: summary of cliques so far
 • C: compare to each maximal clique in
 • \rightarrow add C to S: if no redundancy
 • \rightarrow discard C: if much overlap with any C' in S

• Overhead
 • $O(T_{MCE} + |M| \times |S|)$
 • costly computation
Main idea

• Characterizing search process
 • nearby cliques C and C' (leafs) correlated
 • have common ancestors in search tree
 • $C \sim C'$ when close in search tree
For efficiency – first step

• Glancing at last one
 • discard most redundancy in one shot

generated sequence of cliques
For efficiency – first step

• Summary as a sample
 • retain with probability $s(r)$: decreases with r
 • cliques as data points, r as slope
 • a perspective: analogy to importance sampling

[Diagram showing generated sequence of cliques with high and low $s(r)$]
For efficiency – first step

• Choice of $s(r)$
 • To meet visibility requirements
 • Choose: $s(r) = \frac{(1-r)(2-\tau)}{2-r-\tau}$
 • Claim: $E[\text{vis}(C)] \geq \tau$ for all C
For efficiency – a further step

• Detected redundancy when \textit{fully} grown
• Now: earlier with \textit{foresight}

• At inner node
 • lower bound r
 • prune whole branch with large r

foretell r at least how much for any C starting here?

At most y vertices in C' for C (forming a clique)

t more vertices to C

Then at least $y - t$ vertices in $C \cap C'$
For efficiency – a further step

• Sampling search branch
 • Want: guarantee still holds
 • for expected visibility
 • Need: maintain $\Pr[\text{final retaining prob.}] \geq s(r)$
 • How: set $\Pr[\text{sample a branch}] = \sqrt[l]{s(\tilde{r})}$
 • l: upper bound of branch depth
 • \tilde{r}: lower bound of r
Applying the summary

• Feed other computations
 • A succinct input
 • Example: top-k results
 • Approx. ratio using S: $\tau(1 - 1/e)$

Set of all maximal cliques

τ-visible summary

Applications

top-k retrieval
exploration
visualization
...

MCE

Summary
Applying the summary

• Discovering clique space
 • Proposal: explore interactively

- All maximal cliques, M
- summary of M, Top-k if too many
- Interesting region Z
- Cliques on Z and its neighbors, M’
- Summary of M’
On real world networks

• Datasets

<table>
<thead>
<tr>
<th></th>
<th>Blog</th>
<th>Skitter</th>
<th>Wiki</th>
<th>Patent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V</td>
<td>$</td>
<td>990K</td>
<td>1.7M</td>
</tr>
<tr>
<td>$</td>
<td>E</td>
<td>$</td>
<td>6.6M</td>
<td>11.1M</td>
</tr>
<tr>
<td>$</td>
<td>M</td>
<td>$</td>
<td>11.2M</td>
<td>18.3M</td>
</tr>
</tbody>
</table>

of all maximal cliques
On real world networks

- Summary size
 - slimmed output
 - sharp drop from $\tau = 1$ to $\tau = 0.9$

~50 times smaller
On real world networks

- Running time
 - Reduced time
 - Especially from \(\tau = 1 \) to \(\tau = 0.9 \)

![Graphs showing time halved from \(\tau = 1 \) to \(\tau = 0.9 \).]
On real world networks

- Top-k reporting
 - using full result or summary
 - setting: $k = 20$, $\tau = 0.7$
 - result: small quality loss, greatly faster

<table>
<thead>
<tr>
<th></th>
<th>Blog</th>
<th>Skitter</th>
<th>Wiki</th>
<th>Patent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{samp}</td>
<td>822</td>
<td>1205</td>
<td>462</td>
<td>173</td>
</tr>
<tr>
<td>Q_{all}</td>
<td>826</td>
<td>1214</td>
<td>464</td>
<td>174</td>
</tr>
<tr>
<td>T_{samp}</td>
<td>1.38</td>
<td>4.02</td>
<td>8.59</td>
<td>0.7</td>
</tr>
<tr>
<td>T_{all}</td>
<td>28.4</td>
<td>57.5</td>
<td>197</td>
<td>8.9</td>
</tr>
</tbody>
</table>

→ Quality by summary
→ Quality by all cliques
→ Time by summary
→ Time by all cliques
Wrapping up

• Tradeoff
 • completeness \(\rightarrow\) compactness & usability & time

• Approaches
 • notion of \(\tau\)-visible summary
 • fast redundancy detection
 • early pruning
 • summary as a sample

• Applications
 • exploration, top-\(k\), and more