Linking Named Entities in Tweets with Knowledge Base via User Interest Modeling

Wei Shen†, Jianyong Wang†, Ping Luo‡, Min Wang♯
†Tsinghua University, Beijing, China
‡HP Labs China, Beijing, China
♯Google Research, Mountain View, USA

KDD 2013
Chicago, Illinois USA
Outline

- Motivation
- Problem Definition
- KAURI Framework
- Experiments
- Conclusion
Outline

- Motivation
- Problem Definition
- KAURI Framework
- Experiments
- Conclusion
Motivation

- Twitter: important information source
- Tweets: social status updates about topics ranging from daily life to news events

Tweets

- **t₁**: Bulls should still aim for a title, even through the horrible news.
- **t₂**: McNealy finished, he was pretty much squarely in Sun's camp. @jniccolai
 - *Sun*: the star at the center of the Solar System
 - *Sun Microsystems*: a multinational computer company
 - *Sun-Hwa Kwon*: a fictional character named “Sun-Hwa Kwon”
- **t₃**: Scott explains what open means...
- **t₄**: Tyson Chandler says Tony Allen is the best on-ball defender in the #NBA [link](http://t.co/YGmByJMC)
Motivation

- Many large scale knowledge bases have emerged
 - Dbpedia, YAGO, Freebase, Probase, and etc.

- Bridging these knowledge bases with the collection of tweets

Figure 1: An example of YAGO knowledge base

Source: From Information to Knowledge: Harvesting Entities and Relationships from Web Sources. PODS’10.
Outline

- Motivation
- Problem Definition
- KAURI Framework
- Experiments
- Conclusion
Problem definition

- Tweet entity linking
 - link the textual named entity mentions detected from tweets with their mapping entities existing in a knowledge base

Figure 2: An illustration of the tweet entity linking task. Named entity mentions detected in tweets are in bold; candidate mapping entities for each entity mention are generated by a dictionary-based method and ranked by their prior probabilities in decreasing order; true mapping entities are underlined.
Applications

- Twitter user interest discovery
- Twitter users Recommendation
- Tweets recommendation and re-ranking
- Entity information collection from Twitter
 - e.g., products and celebrities
Tweet entity linking

- **Challenge**
 - noisy, short, and informal nature of tweets
- **Previous entity linking methods** *(EACL’06, EMNLP’07, KDD’09, SIGIR’11, EMNLP’11, and WWW’12)*
 - focus on linking entities in Web documents
 - Context Similarity
 - Topical Coherence

Not work well

Tweets

<table>
<thead>
<tr>
<th>Tweet</th>
<th>Candidate mapping entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulls should still aim for a title, even through the horrible news.</td>
<td></td>
</tr>
<tr>
<td>Scott explains what open means...</td>
<td></td>
</tr>
<tr>
<td>Tyson Chandler says Tony Allen is the best on-ball defender in the #NBA</td>
<td>Bulls (rugby); Chicago Bulls; Bulls, New Zealand</td>
</tr>
<tr>
<td>Scott McNealy; Rusty McNealy</td>
<td></td>
</tr>
<tr>
<td>Sun; Sun Microsystems; Sun-Hwa Kwon</td>
<td></td>
</tr>
<tr>
<td>Scott Steiner; Walter Scott; Scott McNealy</td>
<td></td>
</tr>
<tr>
<td>Tyson Chandler</td>
<td></td>
</tr>
<tr>
<td>Tony Allen (musician); Tony Allen (basketball)</td>
<td></td>
</tr>
<tr>
<td>National Basketball Association</td>
<td></td>
</tr>
</tbody>
</table>
Tweet entity linking

- **Challenge**
 - noisy, short, and informal nature of tweets

- **Previous entity linking methods** (EACL’06, EMNLP’07, KDD’09, SIGIR’11, EMNLP’11, and WWW’12)
 - focus on linking entities in Web documents
 - Context Similarity
 - Topical Coherence

- **We can increase the linking accuracy, if we**
 - combine *intra-tweet local information*
 - with *inter-tweet user interest information*
Tweet entity linking

- **Challenge**
 - noisy, short, and informal nature of tweets
- **Previous entity linking methods** (EACL’06, EMNLP’07, KDD’09, SIGIR’11, EMNLP’11, and WWW’12)
 - focus on linking entities in Web documents
 - Context Similarity
 - Topical Coherence

Not work well
Outline

- Motivation
- Problem Definition
- KAURI Framework
- Experiments
- Conclusion
KAURI Framework

- **Assumption 1.**
 - Each Twitter user has an underlying topic interest distribution over various topics of named entities.

- **Assumption 2.**
 - If some named entity is mentioned by a user in his tweet, that user is likely to be interested in this named entity.

- **Assumption 3.**
 - If one named entity is highly topically related to the entities a user is interested in, that user is likely to be interested in this named entity as well.
Graph construction

- For each Twitter user,
 - we construct a graph

Running example: Example 1

Example 1
Graph construction

Candidate entity

Weight:
• indicating the strength of interdependence
• calculated using the Wikipedia Link-based Measure [1].

Graph construction

- Assumption 1.
 - Each Twitter user has an underlying topic interest distribution over various topics of named entities.

\[r_{j,q}^i \] : candidate mapping entity

\[s_{j,q}^i \] : interest score indicating the strength of the user’s interest in it
Graph construction

Assumption 2.
- If some named entity is mentioned by a user in his tweet, that user is likely to be interested in this named entity.

\[r_{j,q}^i : \text{candidate mapping entity} \]

\[S_{j,q}^i : \text{interest score indicating the strength of the user's interest in it} \]

\[P_{j,q}^i : \text{initial interest score estimated from intra-tweet local information} \]
Initial interest score estimation

The initial interest score

\[p_{j,q}^i = \alpha \cdot Pp(r_{j,q}^i) + \beta \cdot Sim(r_{j,q}^i) + \gamma \cdot Coh(r_{j,q}^i) \]

- **Prior probability**
- **Context similarity**
- **Topical coherence in tweet**

entity frequency in the Wikipedia article corpus
The initial interest score estimation

\[p_{j,q}^i = \alpha \cdot pp(r_{j,q}^i) + \beta \cdot Sim(r_{j,q}^i) + \gamma \cdot Coh(r_{j,q}^i) \]

- Prior probability
- Context similarity
- Topical coherence in tweet

\[\vec{w} = \langle \alpha, \beta, \gamma \rangle \]

Weight vector

\[\alpha + \beta + \gamma = 1 \]

- We utilize the max-margin technique to automatically learn the weight vector which gives proper weights for those three intra-tweet local features.

Initial interest score estimation

Table 2: The initial interest scores for candidate mapping entities in Example 1

<table>
<thead>
<tr>
<th>Tweets</th>
<th>Candidate mapping entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulls should still aim for a title, even through the horrible news.</td>
<td>Bulls (rugby): Chicago Bulls: Bulls, New Zealand</td>
</tr>
<tr>
<td>Tyson Chandler says Tony Allen is the best on-ball defender in the NBA</td>
<td>Tyson Chandler</td>
</tr>
<tr>
<td></td>
<td>Tony Allen (musician); Tony Allen (basketball)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity</th>
<th>Interest Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulls (rugby)</td>
<td>0.13</td>
</tr>
<tr>
<td>Bulls, New Zealand</td>
<td>0.0208</td>
</tr>
<tr>
<td>Tony Allen (musician)</td>
<td>0.145</td>
</tr>
<tr>
<td>National Basketball Association</td>
<td>0.402</td>
</tr>
</tbody>
</table>
User interest propagation algorithm

\[\overrightarrow{s} = \lambda \overrightarrow{p} + (1 - \lambda) \overrightarrow{B} \overrightarrow{s} \]

- The final interest score vector
- The interest propagation strength matrix
- The initial interest score vector
- Normalized \(p_{j,q} \)

Initialization: \(\overrightarrow{s} = \overrightarrow{p} \)

Then apply this formula iteratively until \(\overrightarrow{s} \) stabilizes within some threshold.
User interest propagation algorithm

Table 3: The final interest scores for candidate mapping entities in Example 1

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>Bulls (rugby)</th>
<th>Chicago Bulls</th>
<th>Bulls, New Zealand</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{i,q}^t$</td>
<td>0.13</td>
<td>0.0492</td>
<td>0.208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>Bulls, New Zealand</th>
<th>Tyson Chandler</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{i,q}^t$</td>
<td>0.0208</td>
<td>0.318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>Tony Allen (musician)</th>
<th>Tony Allen (basketball)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{i,q}^t$</td>
<td>0.145</td>
<td>0.155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>National Basketball Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{i,q}^t$</td>
<td>0.402</td>
</tr>
</tbody>
</table>

Table 2: The initial interest scores for candidate mapping entities in Example 1

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>Bulls (rugby)</th>
<th>Chicago Bulls</th>
<th>Bulls, New Zealand</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_{i,q}^t$</td>
<td>0.0624</td>
<td>0.189</td>
<td>0.0682</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>Bulls, New Zealand</th>
<th>Tyson Chandler</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_{i,q}^t$</td>
<td>0.00682</td>
<td>0.194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>Tony Allen (musician)</th>
<th>Tony Allen (basketball)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_{i,q}^t$</td>
<td>0.0476</td>
<td>0.122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r_{i,q}^t$</th>
<th>National Basketball Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_{i,q}^t$</td>
<td>0.297</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- Problem Definition
- KAURI Framework
- Experiments
- Conclusion
Experimental setting

• Data sets

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Twitter user</td>
<td>20</td>
</tr>
<tr>
<td># tweets</td>
<td>3818</td>
</tr>
<tr>
<td># tweets having at least one named entity mention</td>
<td>1721</td>
</tr>
<tr>
<td># named entity mentions</td>
<td>2918</td>
</tr>
<tr>
<td># uncertain named entity mentions</td>
<td>241</td>
</tr>
<tr>
<td># test named entity mentions</td>
<td>2677</td>
</tr>
<tr>
<td># linkable named entity mentions</td>
<td>2240</td>
</tr>
<tr>
<td># un/linkable named entity mentions</td>
<td>437</td>
</tr>
</tbody>
</table>

Table 4: A summary of the gold standard data set

• Weight learning:
 • Two-fold cross validation
Experimental results

<table>
<thead>
<tr>
<th>Method</th>
<th>Linkable</th>
<th>Unlinkable</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>Accu.</td>
<td>#</td>
</tr>
<tr>
<td>LINDEN</td>
<td>1852</td>
<td>0.827</td>
<td>353</td>
</tr>
<tr>
<td>LOCAL(_{\beta=0,\gamma=0})</td>
<td>1784</td>
<td>0.796</td>
<td>355</td>
</tr>
<tr>
<td>LOCAL(_{\gamma=0})</td>
<td>1795</td>
<td>0.801</td>
<td>355</td>
</tr>
<tr>
<td>LOCAL(_{\beta=0})</td>
<td>1862</td>
<td>0.831</td>
<td>355</td>
</tr>
<tr>
<td>LOCAL(_{full})</td>
<td>1863</td>
<td>0.832</td>
<td>355</td>
</tr>
<tr>
<td>KAURI(_{\beta=0,\gamma=0})</td>
<td>1882</td>
<td>0.840</td>
<td>356</td>
</tr>
<tr>
<td>KAURI(_{\gamma=0})</td>
<td>1894</td>
<td>0.846</td>
<td>357</td>
</tr>
<tr>
<td>KAURI(_{\beta=0})</td>
<td>1913</td>
<td>0.854</td>
<td>371</td>
</tr>
<tr>
<td>KAURI(_{full})</td>
<td>1923</td>
<td>0.858</td>
<td>373</td>
</tr>
</tbody>
</table>

Table 5: Experimental results over the data set

\[
p_{j,q}^i = \alpha \ast Pr(r_{j,q}^i) + \beta \ast Sim(r_{j,q}^i) + \gamma \ast Coh(r_{j,q}^i)
\]

LINDEN is the model proposed in [3] to address the task of linking entities in Web documents.

Incremental update

Table 6: Incremental update performance of KAURI

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweet index</td>
<td>11-160</td>
<td>21-170</td>
<td>31-180</td>
<td>41-190</td>
<td>51-200</td>
</tr>
<tr>
<td># added nodes</td>
<td>827</td>
<td>598</td>
<td>726</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td># added edges</td>
<td>172296</td>
<td>139398</td>
<td>122824</td>
<td>217440</td>
<td>201368</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.853</td>
<td>0.859</td>
<td>0.859</td>
<td>0.855</td>
<td>0.858</td>
</tr>
<tr>
<td>Incremental annot. time (s)</td>
<td>35.58</td>
<td>30.22</td>
<td>28.13</td>
<td>45.36</td>
<td>42.50</td>
</tr>
<tr>
<td>Incremental annot. time per mention (ms)</td>
<td>17.98</td>
<td>15.20</td>
<td>14.03</td>
<td>22.53</td>
<td>21.08</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- Problem Definition
- KAURI Framework
- Experiments
- Conclusion
Conclusion

- **A novel problem**
 - tweet entity linking

- **KAURI**
 - a graph-based framework that unifies
 - intra-tweet local information
 - with inter-tweet user interest information

- **Good performance**
 - significantly outperforms the baseline methods in terms of accuracy
 - efficient and scales well to tweet stream
Thanks!

Question?