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Motivation

€ Given an incomplete data set, the EM [Dempster et
al. 1977] algorithm iteratively searches for the
maximum likelihood estimate of a probabilistic
model. However, the search usually converges
slowly under these conditions because more
iterations or time for each iteration are required:

® High missing rate
@ L arge training data set
® Large parameter vector

& Therefore, accelerating EM is desired for
training’probabilistic models.
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Brief Summary of Our Work

& Accelerates the following:
O EM
® Parameterized EM (pEM) [Bauer et al. 1997]

® Adaptive overrelaxed EM (aEM) [salakhutdinov &
Roweis 2003]

€ Should be able to accelerate:
® GIS for conditional random field

® Those can be formulated as fixed-point
iteration methods: § — M(@)
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Parameter Estimation Problem
& Goal: find §* that maximizes L(6)

® (9 . parameter vector of a probabilistic model
® L(Q) . log-likelihood with the training data

® (9* : maximum likelihood estimate

€®Influence of incomplete data
® [ (0) contains many local maxima
® Search for local maxima
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The EM Algorithm

Repeat (in iteration t)
) = M (91
Until L(@(t)) _ L(@(t—l)) <

&M : an EM mapping, E-step + M-step

®Likelihood increases monotonically:
L(g(t)) > L(@(t—l))

®Local maximum:  §* = M (6*)
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Taylor Expansion of M

€ In the neighbor of 6*, we apply Taylor
expansion to M [Dempster et al. 1977] :

U = M(0Y) = 0% + M'(67) (0" — %) = 6" + J (0" — 6")

where J Is the Jacobian of M.
@ Applying M to (%) for h times, we have:
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Eigenvalues of J

€ The eigen decomposition of J is:

€ The eigenvalues of J are expected to lie
IN [0, 1) [Dempster et al. 1977] .
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Convergence Rate of EM

®Therefore, the convergence rate is
determined by A,,,. [Dempster et al. 1977] .
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Parameterized EM (pEM)

Repeat (in iteration t)
H(t) — Mn(g(t—l))
Until L(@(t)) _ L(@(t—l)) <

& M0 V) =00 4 (M) — ¢

®Likelihood increases monotonically in the
neighborhood of @*if 0 <n <2 [Baueretal.
1997] . pEM with =1 is EM.
®Local maximumz0* = M (0*) = M, (0)
9
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Convergence Rate of pEM (1)

€ The eigenvalues of the Jacobian of M-
SRl )\, = (1 — 7)) = 1.0 + nA

A

& Convergence rate is determined by

maX{P\nma:c‘a |)\nmzn‘} because )\m; < 0
IS possible.
®pEM is faster than EM if

max{|Apmaz s Pimin| } < Amax 10
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Convergence Rate of pEM (2)

€ Optimal learning rate n™ is:

which minimizes max{|\,mazl|, [ Anminl}
€ 7" is obtained by solving Ajmaz = —Apmin
®pEM with 7™ is faster than EM

11
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Adaptive Overrelaxed EM (aEI\/I)

[Salakhutdinov & Roweis 2003]

€ pEM with dynamic 7.

®If L(OW)—-LOD) >4, usen=11xn
In the next iteration.

®If L(OW) — L(6¢—1)) < 4, discard the

update and use n = 1.0 In the next
iteration.

12



Adaptive Internet Intelligent Agent Lab
ﬁ“‘ﬁ‘”éﬁ;’/f Al [ B

Ailtken’s Acceleration for EM (1)

[McLachlan & Krishnan, 1997]

®In the neighborhood of @*, we have

where (9(75) = M(@(t)).

13
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Ailtken’s Acceleration for EM (2)

N 2
Ao =1+ M+ A2+

€ However, exact estimation of J might be intractable
for complicated models so that Aitken’s acceleration

IS hard to use [Hesterberg 2005].

14
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Our Solution to Accelerate EM

&€ Triple jump framework to integrate
previous algorithms.

€ Simple approximation of J to
accelerate the slowest direction (along
the eigenvector corresponding to

max{‘)\nmaa: |7 ‘)‘nmzn |} )
&® Theoretical and empirical verification

15
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Triple Jump Framework (1)

&®In iteration t, TJ selects the first
candidate as g(t) that satisfies

L(OWY — L(eF—D) > 6
@ Candidate 1 (by Variant 1)

< t—1
6(t—2) p(t—1) @ Candidate 2 (by Variant 2)
[ ] q‘ q ‘ -

@ candidate N (Em) 16



Adaptive Internet Intelligent Agent Lab
s St P [CE B

Triple Jump Framework (2)

& Candidate n is checked by
M (0), L(0)] = M1(6)
which is the EM mapping plus few additional
cost to compute the likelihood of the input.

o(t-2) g(t—1)

. —@ —> @ @9, L(6,,)




Adaptive Internet Intelligent Agent Lab
s St P [CE B

Triple Jump Framework (3)

®if L(0,)— L(0*~Y) >4, unchecked
candidates are discarded. 6,, becomes

9(Y) ‘and M(f,) becomes Candidate N
for iteration t+1.

ot—2) 9(t=1)  g(¢)
. —>@ —> @ —> O

@ candidate N (EM)
18
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Triple Jump Framework (4)

&€ Other candidates are generated by
candidate N and previous parameter
vectors by extrapolation.

@ Candidate 1 (by Variant 1)
pt—1) ()

Candidate 2 (by Variant 2)
L I B | q ‘ q ‘

@ candidate N (EM) 19
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Advantages of TJ Framework

€ Easy to achieve acceleration by using
EM directly as a subroutine

€®Easy to integrate many EM variants

&®Needless to handle the failure of
extrapolation (naturally handled by EM,
the last candidate)

20
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TJEM Extrapolation (1)

€®Estimate largest eigenvalue with:
0]
— 0 — 1)

0r —

where 1) = M(e(t 1)) based on the
requirement of the Aitken’s acceleration.
Therefore, the cycle of a TJEM extrapolation
IS two EM operations and a far jump, like hop,

step, and jump in a triple jump.

21
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TJEM Extrapolation (2)

®Assign J = 7(’5) and perform the Aitken’s
acceleration. That is,

~®) 0 0
J=Q| o . o |@°"
0 0 ~W

22
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TJEM Algorithm

&®Triple Jump Framework
& Candidate 1: by TJEM Extrapolation
€ Candidate 2: by EM

23
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TJpEM Extrapolation

®Use M, instead of M in the Aitken’s
acceleration.

24
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TJpEM Algorithm

&®Triple Jump Framework

€ Candidate 1: TJpEM Extrapolation
& Candidate 2: pEM Extrapolation

& Candidate 3: EM

25
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Convergence Properties of
TJpEM Algorithm

& Suppose that
® TJpEM extrapolation Is successful
® max{|\pmaz|; | Anmin| }is estimated accurately

®The i-th eigenvalue of the Jacobian of the
composition of peEM + TIpEM extrapolation is:

| | A A
ani = Api(1 =0 + 0 Api) = Aji————
| L

n(Ai — Amax) L Ai — Amax
(1 — Amax) 1 — Amax S

vl"_-.'tf].} — \ll”;
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Convergence Rates of TIEM ‘ |
TIJpEM

€ Theorem : The TJpEM algorithm with a
proper learning rate converges faster than
the TJEM algorithm.

27
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Convergence Rates of TIpEM
with Different Learning Rates

®Eigenvalues are 0.1, 0.2, ... 0.9.

Mlax eigenvalues of TIPEM with diffarent )

28
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TJ?pEM Extrapolation

€ The goal of TI’pEM is to reduce the
iImpact of negative eigenvalues.

& Conceptually, we combine two pEM
operations into one (M) so that the
all eigenvalues (>\2) become positive.

29
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Comparison of TI’pEM & TIpEM

pl+D = glt=D) 1

pU+L) — () 4 (1 — - mﬁ}—l{Hm 288 (TIPEM)

n

4 %(7t)s are identical.

€ TJpEM extrapolates from g(), while
TJ2pEM from_ 91
30
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TJ?pEM Algorithm

&®Triple Jump Framework

& Candidate 1: TJ?pEM Extrapolation
& Candidate 2: pEM Extrapolation
®Candidate 3: EM

31
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Convergence Rate of TJ?pEM

&€ The i-th eigenvalue of TJ?pEM is:

32
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Convergence Rates of TJ?pEM
with Different Learning Rates

hWax eigenvalues of T._|EF'E|"-.-'1 with different

33
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TJ%aEM Algorithm

€ TJ°pEM with dynamic learning rates
(similar to aEM)

¢ 7) iterates among 1.2, 1.4, 1.6 and 1.8.

34
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Why Dynamic Learning Rates

®From our experiments, we found that
aEM outperforms pEM with the optimal
learning rate.

€ \\We can prove that pEM with dynamic
learning rates can accelerate pEM with
the optimal learning rate.

35
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Proof Sketch

€ Assume that we use two learning rates:

..,.-](f 1) n* 4+ A and 7 (2) — o — A

€ The eigenvalues of dynamic learning rates are
smaller than their counterparts of the optimal
learning rate

(T =0+ —AQ =X)A =" + 7N+ A1 = N))




Adaptive Internet Intelligent Agent Lab
B /E’/@ﬂf/ﬁ%‘ﬂf L E

Data sets

€ 100 synthesized data sets for each model

® HMM: 5-state, 20-symbol, 500 sequences with length
100

® Bayesian net (ALARM) [Cooper & Herskovitz]: 2,000 cases
with different missing rates for all random variables

® GMM: 5 equal-weight Gaussian of means= {(0,0),
(1,0), (-1,0), (0,1), (0,-1)} and var = 0.8. 2,000 cases.

® Semisupervised Bayesian classifier: 5-class, 100 10-
state features, 3,000 cases with unequal missing
rates

37
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TJEM Faster than EM (HMM)
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TJEM Faster than EM (Bayesian Classifier)
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TJpEM with Proper Learning
Rate Faster than TIEM

HMM
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TIJpEM with Large Learning
Rates Slower than TIEM
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TJ°pEM Overcomes the Impact
of Large Learning Rates
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aEM Faster than pEM

& GMM
&®Empirically find that ™ = 1.96

€ pEM with 7* converged in 1,327
iterations.

€®aEM in 766 iterations
& TJ2aEM in 527 iterations

45
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TJ%aEM Faster than aEM (HMM)
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TJ%aEM Faster than aEM (Alarm)
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TJ%aEM Faster than aEM (GMM)
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Componentwise TIEM

®\We can further accelerate previous TJ
algorithms when the Jacobian of M Is
close to a diagonal or block diagonol
matrix by using different approximation
for each block.
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Case Study: Bayesian Classifier

€ \Vith the increase of missing values,
the Jacobian of EM for a
semisupervised Bayesian classifier Is
closer to block diagonal matrix.

51
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Missing Rate = 50%
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Summary

&®Triple jump framework to integrate EM
and Its extrapolation-based variants

€ Improving convergence rate from
TJEM, TIpEM, TI’pEM, to TJ’aEM

€ CTJEM for sparse data sets where the
Jacobian might be close to block
diagonal.

54
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Thank You

55
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Extrapolation-based Variants
L(6{+1)

L(6W)

Search can speed up
but convergence is
not guaranteed.

6)(15 1) cq
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Advantage of TJ?pEM with Large
Learning Rates

&€ Toy model: Mixture of two 1-dimensional
Gaussian with fixed variance.

€500 training examples

& Parameter vector: (p,, 4;, 1)

€ J can be estimated [Louis 19821.
€®Eigenvalues: (0.78, 0.31, 0.26)
®Apply = 1.9 :(0.58,-0.31, -0.41)

59
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Parameter Vector on the
Eigenspace by TIJpEM
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Parameter Vector on the

Eigenspace by TJ?pEM
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