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Motivation
Given an incomplete data set, the EM [Dempster et 
al. 1977] algorithm iteratively searches for the 
maximum likelihood estimate of a probabilistic 
model.  However, the search usually converges 
slowly under these conditions because more 
iterations or time for each iteration are required:

High missing rate 
Large training data set
Large parameter vector

Therefore, accelerating EM is desired for 
training probabilistic models.
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Brief Summary of Our Work

Accelerates the following:
EM
Parameterized EM (pEM) [Bauer et al. 1997]

Adaptive overrelaxed EM (aEM) [Salakhutdinov & 
Roweis 2003]

Should be able to accelerate:
GIS for conditional random field
Those can be formulated as fixed-point 
iteration methods: θ =M(θ)
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Parameter Estimation Problem
Goal: find       that maximizes

: parameter vector of a probabilistic model
: log-likelihood with the training data
: maximum likelihood estimate

Influence of incomplete data
contains many local maxima

Search for local maxima

θ
L(θ)

L(θ)

θ∗

θ∗

L(θ)



Adaptive Internet Intelligent Agent Lab
機器學習與網路代理人實驗室

5

The EM Algorithm
Repeat (in iteration t)

Until 

M : an EM mapping, E-step + M-step
Likelihood increases monotonically:

Local maximum:
L(θ(t)) ≥ L(θ(t−1))

θ∗ =M(θ∗)

θ(t) =M(θ(t−1))
L(θ(t))− L(θ(t−1)) < δ



Adaptive Internet Intelligent Agent Lab
機器學習與網路代理人實驗室

6

Taylor Expansion of M

In the neighbor of       , we apply Taylor 
expansion to M [Dempster et al. 1977] :

where J is the Jacobian of M.
Applying M to         for h times, we have:

θ∗

θ(t)
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Eigenvalues of J

The eigen decomposition of J is:

The eigenvalues of J are expected to lie 
in [0, 1) [Dempster et al. 1977] .
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Convergence Rate of EM

Since                 , we have

Therefore, the convergence rate is 
determined by            [Dempster et al. 1977] .λmax

0 ≤ λi < 1
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Parameterized EM (pEM)
Repeat (in iteration t)

Until 

Likelihood increases monotonically in the 
neighborhood of        if                       [Bauer et al. 
1997] .  pEM with               is EM. 
Local maximum:

θ∗

θ(t) =Mη(θ
(t−1))

L(θ(t))− L(θ(t−1)) < δ

Mη(θ
(t−1)) = θ(t−1) + η(M(θ(t−1))− θ(t−1))

θ∗ =M(θ∗) =Mη(θ
∗)

0 < η < 2
η = 1
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Convergence Rate of pEM (1)

The eigenvalues of the Jacobian of          
are: 

Convergence rate is determined by
because                  

is possible.
pEM is faster than EM if

M´

max{|ληmax|, |ληmin|} ληi < 0

max{|ληmax|, |ληmin|} < λmax
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Convergence Rate of pEM (2)

Optimal learning rate       is:

which minimizes
is obtained by solving

pEM with          is faster than EM

η∗

max{|ληmax|, |ληmin|}
η∗ ληmax = −ληmin

η∗
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Adaptive Overrelaxed EM (aEM) 
[Salakhutdinov & Roweis 2003]

pEM with dynamic    .
If                                        , use
in the next iteration.
If                                      , discard the 
update and use              in the next 
iteration.

η

L(θ(t))− L(θ(t−1)) ≥ δ η = 1.1 ∗ η

L(θ(t))− L(θ(t−1)) < δ
η = 1.0
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Aitken’s Acceleration for EM (1) 
[McLachlan & Krishnan, 1997]

In the neighborhood of       , we have

where                             .

θ∗

θ
(t)
EM =M(θ(t))
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Aitken’s Acceleration for EM (2)

However, exact estimation of J might be intractable 
for complicated models so that Aitken’s acceleration 
is hard to use [Hesterberg 2005].

1
1−λi = 1 + λi + λ2i + · · ·
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Our Solution to Accelerate EM

Triple jump framework to integrate 
previous algorithms.
Simple approximation of J to 
accelerate the slowest direction (along 
the eigenvector corresponding to 

).
Theoretical and empirical verification
max{|ληmax|, |ληmin|}
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Triple Jump Framework (1)

In iteration t, TJ selects the first 
candidate as         that satisfies 

. 
θ(t)

…

Candidate 1 (by Variant 1) 

Candidate 2 (by Variant 2)

Candidate N (EM)

θ(t−1)θ(t−2)

L(θ(t))− L(θ(t−1)) ≥ δ
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Triple Jump Framework (2)

Candidate n is checked by

which is the EM mapping plus few additional 
cost to compute the likelihood of the input.

…
θ(t−1)

θ(t−2)
θ̂n

M(θ̂n)

L(θ̂n)

[M(θ), L(θ)] =M1(θ)
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Triple Jump Framework (3)

If                                     , unchecked 
candidates are discarded.       becomes 

, and             becomes Candidate N       
for iteration t+1.

…
θ(t−1)θ(t−2)

M(θ̂n)

θ̂n

θ(t)

Candidate N (EM)

θ(t)

L(θ̂n)− L(θ(t−1)) ≥ δ
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Triple Jump Framework (4)

Other candidates are generated by 
candidate N and previous parameter 
vectors by extrapolation.

…
θ(t−1) θ(t)

Candidate 1 (by Variant 1) 

Candidate 2 (by Variant 2)

Candidate N (EM)
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Advantages of TJ Framework

Easy to achieve acceleration by using 
EM directly as a subroutine
Easy to integrate many EM variants
Needless to handle the failure of 
extrapolation (naturally handled by EM, 
the last candidate)
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TJEM Extrapolation (1)
Estimate largest eigenvalue with:

where                                   based on the 
requirement of the Aitken’s acceleration.  
Therefore, the cycle of a TJEM extrapolation 
is two EM operations and a far jump, like hop, 
step, and jump in a triple jump.

θ(t) =M(θ(t−1))
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TJEM Extrapolation (2)
Assign                  and perform the Aitken’s
acceleration.  That is, 

J = Q

⎛⎜⎝ γ(t) 0 0

0
. . . 0

0 0 γ(t)

⎞⎟⎠Q−1
J = γ(t)
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TJEM Algorithm

Triple Jump Framework
Candidate 1: by TJEM Extrapolation
Candidate 2: by EM
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TJpEM Extrapolation

Use         instead of        in the Aitken’s
acceleration.

where                                . 

MMη

θ(t) =Mη(θ
(t−1))
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TJpEM Algorithm

Triple Jump Framework
Candidate 1: TJpEM Extrapolation
Candidate 2: pEM Extrapolation
Candidate 3: EM
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Convergence Properties of 
TJpEM Algorithm

Suppose that
TJpEM extrapolation is successful

is estimated accurately 
The i-th eigenvalue of the Jacobian of the 
composition of pEM + TJpEM extrapolation is:

max{|ληmax|, |ληmin|}
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Convergence Rates of TJEM and 
TJpEM

Theorem :  The TJpEM algorithm with a 
proper learning rate converges faster than 
the TJEM algorithm.
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Convergence Rates of TJpEM
with Different Learning Rates

Eigenvalues are 0.1, 0.2, … 0.9.
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TJ2pEM Extrapolation

The goal of TJ2pEM is to reduce the 
impact of negative eigenvalues.
Conceptually, we combine two pEM
operations into one             so that the 
all eigenvalues become positive.

(M2
η )

(λ2η)
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Comparison of TJ2pEM & TJpEM

are identical.

TJpEM extrapolates from       , while 
TJ2pEM from           . 

(TJ2pEM)

(TJpEM)

θ(t)

θ(t−1)

γ
(t)
η s
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TJ2pEM Algorithm

Triple Jump Framework
Candidate 1: TJ2pEM Extrapolation
Candidate 2: pEM Extrapolation
Candidate 3: EM



Adaptive Internet Intelligent Agent Lab
機器學習與網路代理人實驗室

32

Convergence Rate of TJ2pEM

The i-th eigenvalue of TJ2pEM is:
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Convergence Rates of TJ2pEM 
with Different Learning Rates
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TJ2aEM Algorithm

TJ2pEM with dynamic learning rates 
(similar to aEM)

iterates among 1.2, 1.4, 1.6 and 1.8.η
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Why Dynamic Learning Rates

From our experiments, we found that 
aEM outperforms pEM with the optimal 
learning rate.
We can prove that pEM with dynamic 
learning rates can accelerate pEM with 
the optimal learning rate.
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Proof Sketch
Assume that we use two learning rates:

The eigenvalues of dynamic learning rates are 
smaller than their counterparts of the optimal 
learning rate
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Data sets
100 synthesized data sets for each model

HMM: 5-state, 20-symbol, 500 sequences with length 
100
Bayesian net (ALARM) [Cooper & Herskovitz]: 2,000 cases 
with different missing rates for all random variables
GMM: 5 equal-weight Gaussian of means= {(0,0), 
(1,0), (-1,0), (0,1), (0,-1)} and var = 0.8. 2,000 cases.
Semisupervised Bayesian classifier: 5-class, 100 10-
state features, 3,000 cases with unequal missing 
rates
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TJEM Faster than EM (HMM)
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TJEM Faster than EM (Alarm)
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TJEM Faster than EM (GMM)
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TJEM Faster than EM (Bayesian Classifier)
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TJpEM with Proper Learning 
Rate Faster than TJEM
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TJpEM with Large Learning 
Rates Slower than TJEM
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TJ2pEM Overcomes the Impact 
of Large Learning Rates
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aEM Faster than pEM

GMM
Empirically find that
pEM with        converged in 1,327 

iterations.
aEM in 766 iterations
TJ2aEM in 527 iterations

η∗ = 1.96
η∗
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TJ2aEM Faster than aEM (HMM)
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TJ2aEM Faster than aEM (Alarm)
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TJ2aEM Faster than aEM (GMM)
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TJ2aEM Faster than aEM
(Bayesian Classifier)
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Componentwise TJEM

We can further accelerate previous TJ 
algorithms when the Jacobian of M is 
close to a diagonal or block diagonol
matrix by using different approximation 
for each block.



Adaptive Internet Intelligent Agent Lab
機器學習與網路代理人實驗室

51

Case Study: Bayesian Classifier

With the increase of missing values, 
the Jacobian of EM for a 
semisupervised Bayesian classifier is 
closer to block diagonal matrix.
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Missing Rate = 50%
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Missing Rate = 90%
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Summary

Triple jump framework to integrate EM 
and its extrapolation-based variants
Improving convergence rate from 
TJEM, TJpEM, TJ2pEM, to TJ2aEM
CTJEM for sparse data sets where the 
Jacobian might be close to block 
diagonal.
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Thank You
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Illustration of EM

L(θ)

θ
θ(t) θ(t+1) θ(t+2)

L(θ(t))
L(θ(t+1)) L(θ(t+2))
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Extrapolation-based Variants

Search can speed up 
but convergence is 
not guaranteed.

L(θ)

θθ(t) θ(t+1)

L(θ(t))

L(θ(t+1))
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Advantage of TJ2pEM with Large 
Learning Rates

Toy model: Mixture of two 1-dimensional 
Gaussian with fixed variance.
500 training examples
Parameter vector: (p0 , μ1, μ2) 
J can be estimated [Louis 1982].
Eigenvalues: (0.78, 0.31, 0.26) 
Apply                 : (0.58, -0.31, -0.41) ´ = 1.9
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Parameter Vector on the 
Eigenspace by TJpEM
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Parameter Vector on the 
Eigenspace by TJ2pEM
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