Active and passive learning of linear separators

Maria-Florina Balcan

Joint with Phil Long
New results for label efficient, poly time, passive and active learning of linear seps under log-concave distributions

- AL provides exponential improvement over passive learning.
- A poly time PAC algorithm with optimal sample complexity.

- Solves open question for the uniform distr. [Long’95,’03], [Bshouty’09]
- First tight bound for poly-time PAC algos for an infinite class of fns under a general class of distributions. [Ehrenfeucht et al., 1989; Blumer et al., 1989]
New improved bounds for active and passive learning in the case that the data might not be linearly separable.

- agnostic case (disagreement coefficient) and Tsybakov low-noise condition

Nearly log-concave distributions [Applegate&Kannan'91], new structural results there as well.

This talk focuses on the noise-free setting, log-concave distributions.
Supervised Learning Formalization

Classic models: PAC (Valiant), SLT (Vapnik)

- **X** - feature space
- **S**={**(x, l)**} - set of labeled examples
 - drawn i.i.d. from distr. **D** over **X** and labeled by target concept **c***
- **Do** optimization over **S**, find hypothesis **h** ∈ **C**.
- **Goal**: **h** has small error over **D**.
 \[\text{err}(h) = \Pr_{x \in D} (h(x) \neq c^*(x)) \]
- **c*** in **C**, realizable case; else agnostic
- **In PAC**, talk about efficient algorithms.
Sample Complexity Results

Theorem

Infinite C, realizable

\[
m \geq \frac{d}{\epsilon} \log \left(\frac{1}{\epsilon} \right) + \frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right)
\]

labeled examples case are sufficient s.t. with prob. $1-\delta$ all h in C consistent with data satisfy $\text{err}(h) \leq \epsilon$.

Theorem

Lower bound: $m \geq \frac{d}{\epsilon} + \frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right)$, even for linear separators under uniform distribution.

- Lots of work on tighter bounds [e.g., Haussler, Littlestone, Wartmuth'94; Gine and Koltchinski’06]

Still pesky gaps between upper and lower bounds, even for lin. separators under uniform distr.
Active Learning

- The learner can choose specific examples to be labeled.
- He works harder, to use fewer labeled examples.
Classic Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data. Only a tiny fraction can be annotated by human experts.

Protein sequences Billions of webpages Images
When Active Learning Helps

Lots of exciting activity in recent years.

- Several specific analyses for realizable case. E.g., linear separators, uniform distribution.
 - QBC [Freund, 1997]
 - Active Perceptron [Dasgupta, Kalai, Monteleoni '05]

- Generic algos that work even in the agnostic case and under various noise conditions
 - A^2 [Balcan, Beygelzimer, Langford, 2006]
 - DKM algo [Dasgupta, Hsu, Monteleoni, 2007] [Hanneke '10] [Wang'09]
 - Koltchinskii's algo [Koltchinski '10] [Hanneke '10]

Typically suboptimal in query complexity.
Margin Based Active Learning

This talk: \(C \)- homogeneous linear seps in \(\mathbb{R}^d \), \(D \)- logconcave

- Realizable: exponential improvement, only \(O(d \log 1/\varepsilon) \) labels to find a hypothesis with error \(\varepsilon \). [Bounded noise].
- Tsybakov noise: polynomial improvement.

Log-concave distributions: log of density func concave

- wide class: includes uniform distr. over any convex set, Gaussian distr., Logistic, etc
- played a major role in sampling, optimization, integration, learning [LV'07, KKMS'05, KLT'09]
Margin Based Active Learning

This talk: C - homogeneous linear seps in \mathbb{R}^d, D - logconcave

- Realizable: exponential improvement, only $O(d \log \frac{1}{\varepsilon})$ labels to find a hypothesis with error ε. [Bounded noise].
- Tsybakov noise: polynomial improvement.

Broadens the class of pbs for which we have concrete and optimal bounds for AL.

- Bounds show improvement in the $\frac{1}{\varepsilon}$ factor without increase in the d factor.
Margin Based Active-Learning, Realizable Case

Algorithm

Draw \(m_1 \) unlabeled examples, label them, add them to \(W(1) \).

iterate \(k=2, \ldots, s \)

• find a hypothesis \(w_{k-1} \) consistent with \(W(k-1) \).
 • \(W(k)=W(k-1) \).
 • sample \(m_k \) unlabeled samples \(x \) satisfying \(|w_{k-1} \cdot x| \leq \gamma_{k-1} \);
 • label them and add them to \(W(k) \).

end iterate
Margin Based Active-Learning, Realizable Case

Draw m_1 unlabeled examples, label them, add them to $W(1)$.

Iterate $k = 2, \ldots, s$

- find a hypothesis w_{k-1} consistent with $W(k-1)$.
- $W(k) = W(k-1)$.
- sample m_k unlabeled samples x satisfying $|w_{k-1}^T \cdot x| \leq \gamma_{k-1}$
- label them and add them to $W(k)$.
Margin Based Active-Learning, Realizable Case

Theorem \(P_X \) log-concave in \(\mathbb{R}^d \).

If \(\gamma_k = \mathcal{O} \left(\frac{c}{2^k} \right) \) and \(m_k = \mathcal{O} \left(d + \log \log (1/\varepsilon) \right) \) then after \(s = \log \left(\frac{1}{\varepsilon} \right) \) iterations \(w_s \) has error \(\leq \varepsilon \).
Linear Separators, Log-Concave Distributions

Fact 1
\[d(u, v) \approx \frac{\theta(u, v)}{\pi} \]

Proof idea:
• project the region of disagreement in the space given by \(u \) and \(v \)
• use properties of log-concave distributions in 2 dimensions.

Fact 2
\[\Pr_x [|v \cdot x| \leq \gamma] \leq \gamma. \]
Fact 3 If $\theta(u, v) = \beta$ and $\gamma = C\beta$

$$\Pr_x [(u \cdot x)(v \cdot x) < 0, |v \cdot x| \geq \gamma] \leq \frac{\beta}{4}.$$
Fact 3: If $\theta(u, v) = \beta$ and $\gamma = C\beta$

$$\Pr_x [(u \cdot x)(v \cdot x) < 0, |v \cdot x| \geq \gamma] \leq \frac{\beta}{4}.$$

Proof idea:

- project the region of disagreement in the space given by u and v
- Note that each x in E has $||x|| \geq \gamma/\beta = c_2$

$$\Pr_x [x \in E] = \sum_{i=1}^{\infty} \Pr [E \cap (B((i+1)c_2) - B(ic_2))] \leq C\beta(i + 1)^2 \exp[-Ci]$$
Margin Based Active-Learning, Realizable Case

iterate \(k=2, \ldots, s \)
- find a hypothesis \(w_{k-1} \) consistent with \(W(k-1) \).
- \(W(k)=W(k-1) \).
- sample \(m_k \) unlabeled samples \(x \)
 satisfying \(|w_{k-1}^T \cdot x| \leq \gamma_{k-1} \)
- label them and add them to \(W(k) \).

Proof Idea

Induction: all \(w \) consistent with \(W(k) \) have error \(\leq 1/2^k \);
so, \(w_k \) has error \(\leq 1/2^k \).

For \(\gamma_k = O \left(\frac{c}{2^k} \right) \)

\[\leq 1/2^{k+1} \]

\[\text{err}(w) = \Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \geq \gamma_{k-1}) + \]
\[\Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \leq \gamma_{k-1}) \]
Proof Idea

Under the uniform distr. for $\gamma_k = \mathcal{O}\left(\frac{c}{2^k}\right)$

\[
\text{err}(w) = \Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \geq \gamma_{k-1}) + \Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \leq \gamma_{k-1})
\]

$\leq 1/2^{k+1}$
Proof Idea

Under the uniform distr. for $\gamma_k = \mathcal{O}\left(\frac{c}{2^k}\right)$

\[
\text{err}(w) = \Pr(w \text{ errs on } x, |w_{k-1} \cdot x| \geq \gamma_{k-1}) + \\
\Pr(w \text{ errs on } x \mid |w_{k-1} \cdot x| \leq \gamma_{k-1}) \Pr(|w_{k-1} \cdot x| \leq \gamma_{k-1}) \\
\leq C\gamma_{k-1}.
\]

Enough to ensure

\[
\Pr(w \text{ errs on } x \mid |w_{k-1} \cdot x| \leq \gamma_{k-1}) \leq C_1
\]

Can do with only $m_k = \mathcal{O}\left(d + \log \log (1/\epsilon)\right)$ labels.
Passive Learning

Theorem

Any passive learning algo that outputs \(w \) consistent with

\[
\frac{d}{\epsilon} + \frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right)
\]

examples, satisfies \(\text{err}(w) \leq \epsilon \), with prob. \(1-\delta \).

High Level Idea

• Run algo online, use the intermediate \(w \) to track the progress

• Performs well even if it periodically builds \(w \) using some of the examples, and only uses borderline cases for preliminary classifiers for further training.

• Carefully distribute \(\delta \), allow higher prob. of failure in later stages [once \(w \) is already pretty good, it takes longer to get examples that help to further improve it]
Passive Learning

Theorem

Any passive learning algo that outputs w consistent with

$$\frac{d}{\epsilon} + \frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right)$$

examples, satisfies $\text{err}(w) \leq \epsilon$, with probab. $1-\delta$.

High Level Idea

$$m_k = C_2 (d + \log((1 + s - k)/\delta)) \quad b_k = C_1/2^k$$

$$\sum_{k=1}^{s} 2^k (d + \log((1 + s - k)/\delta))) =$$

$$O(2^s (d + \log(1/\delta)) + \sum_{k=1}^{s} 2^k \log(1 + s - k))$$

$$O(1/\epsilon)$$
Discussion, Open Directions

- Broadens class of pbs for which AL provides exponential improvement in $1/\epsilon$ (without additional increase on d).
- **First tight bound** for a poly-time PAC algo for an infinite class of fns under a general class of distributions.
- Extensions to nearly log-concave distributions, noisy settings. Lower Bounds.

Open Directions

- Efficient query optimal algorithms for AL for more general settings.
- *Close the existing gaps for passive learning for general classes and distributions.*