On Max-Margin Markov Networks in Hierarchical Document Classification

Juho Rousu
Department of Computer Science
University of Helsinki, Finland

Hierarchical Multilabel Classification:
union of partial paths model

Goal: Given document x, and hierarchy $T = (V, E)$, predict multilabel $y \in \{+1, -1\}^k$ where the positive microlabels y_i form a union of partial paths in T.
Frequently used learning strategies for hierarchies

- **Flatten the hierarchy**: Learn each microlabel independently with classification learner of your choice
 - Computationally relatively inexpensive
 - Does not make use of the dependencies between the microlabels

- **Hierarchical training**: Train a node j with examples (x, y) that belong to the parent, i.e. $y_{pa(j)} = 1$.
 - Some of the microlabel dependencies are learned.
 - However, training data fragments towards the leaves, hence estimation becomes less reliable
 - Model is not explicitly trained in terms of a loss function for the hierarchy.

We wish to improve on these approaches...
The classification model

Make the hierarchy a Conditional Random Field (aka Markov Network) \(T = (V, E) \) with the exponential family.

\[
P(y|x, w) = Z(x, w)^{-1} \prod_{e \in E} \exp \left(w_e^T \phi_e(x, y_e) \right) = \exp \left(w^T \phi(x, y) \right)
\]

- \(y_e = (y_i, y_j) \) is an edge-labeling, i.e. a restriction of the whole multilabel \(y \) into the edge \(e = (i, j) \)
- \(\phi_e(x, y_e) \) is a joint feature map for the pair \((x, y_e) \)
- \(w = (w_e)_{e \in E} \) is the weight vector to be learned
- \(Z(x, w) = \sum_{y \in \{-1, +1\}^k} \exp \left(w^T \phi(x, y) \right) \) is a normalization factor (aka partition function).
The joint feature vector $\phi(x, y)$ is composed of blocks

$$\phi_{e}^{u_e}(x, y_e) = [y_e = u_e] \phi(x), e \in E, u_e \in \{+1, -1\}^2$$

where $\phi(x)$ is some feature representation of x (e.g. bag of words, substring spectrum,...)

- This representation allows us to learn different feature weights for different contexts.
- The special structure of repeating $\phi(x)$ can be utilized to save memory

For an example (x, y), where $y_{e_1} = (+1, -1)$ we get the following:

$$\begin{array}{cccc}
\Phi(x, y) & \Phi_{e_1}(x, y_{e_1}) & \Phi_{e_2}(x, y_{e_2}) & \ldots & \Phi_{e_n}(x, y_{e_n}) \\
\Phi_{e_1}(x, y_{e_1}) & 0 & 0 & \Phi(x) & 0 \\
\end{array}$$

$e_1 e_2 \ldots e_n$

(-1,-1) (-1,+1) (+1,-1) (+1,+1)
Loss functions for hierarchies

Consider a true multilabel $y = (y_1, \ldots, y_k) \in \{+1,-1\}^k$, and a predicted one $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_k)$. Many choices:

- **Zero-one loss**: $\ell_{0/1}(y, \hat{y}) = [y \neq \hat{y}]$; treats all incorrect multilabels alike
- **Hamming loss**: $\ell_{\Delta}(y, \hat{y}) = \sum_j [y_j \neq \hat{y}_j]$; counts incorrect microlabels.

Neither of the above takes the hierarchy into account. These do:

- **Path loss** (Cesa-Bianchi et al. 2004):
 $\ell_{H}(y, \hat{y}) = \sum_j c_j [y_j \neq \hat{y}_j \& \ y_k = \hat{y}_k \forall k \in ancestors(j)]$; the first mistake along a path is penalized

- **Edge loss**: $\ell_{\tilde{H}}(y, \hat{y}) = \sum_j c_j [y_j \neq \hat{y}_j \& \ y_{parent(j)} = \hat{y}_{parent(j)}]$; mistake in the child is penalized if the parent was correct.
Goal:

- Separate the correct multilabel from the incorrect ones by a large margin.
- Let the targeted margin scale proportionally to the loss of the multilabel.
- Allow slack for non-separability of data.
Optimization problem

Primal form:
\[
\min_{\mathbf{w}, \xi \geq 0} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \xi_i
\]
\[
\text{s.t. } \mathbf{w}^T (\phi(x_i, y_i) - \phi(x_i, y)) \geq \ell(y_i, y) - \xi_i, \forall i, y \in \{+1,-1\}^k
\]

Dual:
\[
\max_{\alpha > 0} \sum_{i,y} \alpha(x_i, y) \ell(y_i, y) - \frac{1}{2} \sum_{x_i, y, x_i', y'} \alpha(x_i, y)^T K(x_i, y; x_i', y') \alpha(x_i', y')
\]
\[
\text{s.t. } \sum_y \alpha(x_i, y) \leq C, \forall i
\]

- Exponential number (in size of the hierarchy) of primal constraints and dual variables, one per pseudo-example \((x_i, y)\)
- Cannot be solved in this form for realistic-sized datasets, many approaches to make the model tractable (Taskar et al., 2004, 2005; Tshochantaridis et al. 2004)
Marginalized problem

A polynomial-sized problem can be obtained by marginalization (c.f. Taskar et al., 2004), if the loss function and the feature representation is chosen suitably.

Our choices:

- Edge-marginals of dual variables: $\mu_e(x, y_e) = \sum_{u|u_e=y_e} \alpha(x, u)$
- Loss function decomposable by the edges: $\ell(y, y') = \sum_{e\in E} \ell(y_e, y'_e)$; Hamming loss and edge loss apply
- Kernel decomposable by the edges: $K(x, y; x', y') = \sum_{e\in E} K_e(x, y_e; x, y'_e)$
Marginalized problem

\[
\max_{\mu > 0} \sum_{e \in E} \mu_e^T \ell_e - \frac{1}{2} \sum_{e \in E} \mu_e^T K_e \mu_e \\
\text{s.t} \ B_{ie} \mu_i \leq C, \forall \ i, e \in E, \\
A_i \mu_i = 0, \forall \ i
\]

- The matrices \(B_{ie} \) encode box constraints \(\sum_{y, y'} \mu_e(i, y, y') \leq C \)
- The matrices \(A_i \) encode marginal consistency constraints \(\sum_{y'} \mu_e(i, y', y) = \sum_{y'} \mu_{e'}(i, y, y'), \forall y, (e, e') : e = \text{parent}(e') \); these need to be inserted to make the problem correspond to the original dual problem.
- The number of marginal dual variables \(\mu_e \) is \(O(m|E|) \), the edge-kernels \(K_e \) take \(O(m^2|E|) \) space, which is too much even for medium-sized datasets.
- e.g. optimizing 1372 examples by 188 microlabels will consume \(> 10Gb \) memory!
Decomposing the model

\[
\max_{\mu > 0} \sum_{e \in E} \mu_e^T \ell_e - \frac{1}{2} \sum_{e \in E} \mu_e^T K_e \mu_e
\]

s.t \(B_{ie} \mu_i \leq C, \forall i, e \in E, \)

\(A_i \mu_i = 0, \forall i \)

- Consistency constraints \(A_i \mu_i = 0 \) tie the edges together
- Kernels \(K_e \) tie training examples together
- But the gradient of the objective \(g = \ell - (K_e \mu_e)_{e \in E} \) does not contain example interactions

⇒ Iterative, gradient-based methods allow decomposed training, one example at a time
We use Conditional Gradient Descent (c.f. Bertsekas, 1999) to optimize the marginalized dual problem Ingredients:

- Iterative gradient search in the feasible set
- Update direction is the highest feasible point assuming current gradient; found by solving a constrained linear program: \(\max_{\mu \in \mathcal{F}} (\ell - K\mu_0)^T \mu \)
- updates within single-example subspaces can be done independently, after obtaining an initial gradient.
Conditional Gradient Ascent

Gradient
Conditional Gradient Ascent
Using inference to find update directions

- Solving the update direction $\max_{\mu \in \mathcal{F}} (\ell - K_0)^T \mu$ with an LP solver will constitute a bottleneck for scalability.
- By utilizing the hierarchical structure, we solve the problem efficiently.
- **Theorem**: if μ is a vertex of \mathcal{F} there is a unique multilabel y that corresponds to that vertex.
- We can solve the update direction by finding multilabel y^* that maximizes the gradient.
- Message-passing over the hierarchy T, dynamic programming implementaiton works in linear time.
Experiments

Datasets:

- Reuters Corpus Volume 1 (’CCAT’ family), 34 microlabels, maximum tree depth 3, bag-of-words with TFIDF weighting, 2500 documents were used for training and 5000 for testing.
- WIPO-alpha patent dataset (D section), 188 microlabels, maximum tree depth 4, 1372 documents for training, 358 for testing.

Algorithms:

- Our algorithm: H-M3 (’Hierarchical Maximum Margin Markov’)
- Comparison: Flat SVM, hierarchically trained SVM, hierarchical regularized least squares algorithm (Cesa-Bianchi et al. 2004)
- Implementation in MATLAB 7, LIPSOL solver used in the gradient ascent
- Tests run on a high-end Pentium PC with 1GB RAM
Optimization efficiency

Optimization efficiency on WIPO dataset (1372 training examples, 188 microlabels) on a 3GHZ Pentium 4, 1GB main memory

LP = update directions via linear programming DP = update directions via dynamic programming

Dynamic programming vs. Linear Programming for finding the update direction

CPU time (hours) vs. Quadratic objective (% of optimum)
F1 statistics computed for each node depth separately for Reuters (left) and WIPO (right).

- Flat SVM is poor in recalling deep nodes.
- HM3-\ell_{\bar{H}} is the best prediction method in the leaves.
Scalability?

- Dual variables and the gradient require $O(m|E|)$ storage
- Kernel $K(x, x')$ requires $O(m^2)$ storage
- ≈ 10000 examples by 1000 microlabels fit to PC main memory, 100000 examples by 10000 microlabels will take up 100Gb hard disk!

Possibilities:
- Chunking to keep only a part of data in main memory at any given time
- Parallel implementation of conditional gradient algorithm is straight-forward.
Conclusions

- Kernel-based approach for hierarchical text classification when documents can belong to more than one category at a time
- Improved prediction accuracy on deep hierarchies
- Tractable optimization via decomposition into single-example subproblems, incremental conditional gradient search, and efficient inference algorithms to find update directions
- Tractable optimization for medium-sized datasets (thousands of examples × hundreds of microlabels)