From Automated Verification to Automated Design

Moshe Y. Vardi

Rice University
Verification

Model Checking:

- **Given**: Program P, Specification φ.
- **Task**: Check that P models φ

Success:

- **Algorithmic methods**: temporal specifications and finite-state programs.
- **Also**: Certain classes of infinite-state programs
- **Tools**: SMV, SPIN, SLAM, etc.
- **Impact** on industrial design practice is increasing.

Problems:

- Designing P is hard and expensive.
- Redesigning P when P does not model φ is hard and expensive.
Automated Design

Basic Idea:

- Start from spec φ, design P such that P models φ.

 Advantage:
 - No verification
 - No re-design

- Derive P from φ algorithmically.

 Advantage:
 - No design

In essence: Declarative programming taken to the limit.

Harel, 2008: “Can Programming be Liberated, Period?”
Program Synthesis

The Basic Idea: Mechanical translation of human-understandable task specifications to a program that is known to meet the specifications.

Deductive Approach (Green, 1969, Waldinger and Lee, 1969, Manna and Waldinger, 1980)

- Prove **realizability** of function, e.g., $(\forall x)(\exists y)(Pre(x) \rightarrow Post(x, y))$

- Extract **program** from realizability proof.

Classical vs. Temporal Synthesis:

- **Classical:** Synthesize transformational programs

- **Temporal:** Synthesize programs for ongoing computations (protocols, operating systems, controllers, etc.)
Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- **next** \(\varphi \): \(\varphi \) holds in the next state.
- **eventually** \(\varphi \): \(\varphi \) holds eventually
- **always** \(\varphi \): \(\varphi \) holds from now on
- **\(\varphi \) until** \(\psi \): \(\varphi \) holds until \(\psi \) holds.

Semantics

- \(\pi, w \models \text{next } \varphi \) if \(w \cdot \varphi \cdot \varphi \cdot \varphi \cdot \ldots \)
- \(\pi, w \models \text{until } \psi \) if \(w \cdot \varphi \cdot \varphi \cdot \varphi \cdot \psi \cdot \psi \cdot \ldots \)
Examples

• always not (CS₁ and CS₂): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies (Request until Grant)): liveness
Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s: Satisfiability approach (Wolper, Clarke+Emerson, 1981)

- Given: φ

- Satisfiability: Construct model M of φ

- Synthesis: Extract P from M.

Example: always $(\text{odd} \rightarrow \text{next \neg odd}) \land$

always $(\neg\text{odd} \rightarrow \text{next odd})$

\[\text{odd} \xrightarrow{} \text{odd} \]
Reactive Systems

Reactivity: Ongoing interaction with environment (Harel+Pnueli, 1985), e.g., hardware, operating systems, communication protocols, etc. (also, *open systems*).

Example: Printer specification –

- J_i - job i submitted, P_i - job i printed.

- **Safety:** two jobs are not printed together

 \[\text{always } \neg (P_1 \land P_2) \]

- **Liveness:** every job is eventually printed

 \[\text{always } \land_{j=1}^{2} (J_i \rightarrow \text{eventually } P_i) \]
Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M: A single state where J_1, J_2, P_1, and P_2 are all false.

Extract program from M? No!

Why? Because M handles only one input sequence.

- J_1, J_2: input variables, controlled by environment
- P_1, P_2: output variables, controlled by system

Desired: a system that handles *all* input sequences.

Conclusion: Satisfiability is inadequate for synthesis.
Realizability

I: input variables
O: output variables

Game:
- **System**: choose from 2^O
- **Env**: choose from 2^I

Infinite Play:
i_0, i_1, i_2, \ldots
$0_0, 0_1, 0_2, \ldots$

Infinite Behavior:
$i_0 \cup o_0, i_1 \cup o_1, i_2 \cup o_2, \ldots$

Win: Behavior satisfies spec.

Specifications: LTL formula on $I \cup O$

Strategy: Function $f : (2^I)^* \rightarrow 2^O$

Realizability: Abadi+Lamport+Wolper, 1989
Pnueli+Rosner, 1989
Existence of winning strategy for specification.

Desideratum: A universal plan!
Church’s Problem

Church, 1957: Realizability problem wrt specification expressed in MSO (monadic second-order theory of one successor function)

Büchi+Landweber, 1969:
- Realizability is decidable.
- If a winning strategy exists, then a finite-state winning strategy exists.
- Realizability algorithm produces finite-state strategy.

Question: LTL is subsumed by MSO, so what did Pnueli and Rosner do?
Answer: better algorithms!
Strategy Trees

Infinite Tree: D^* (D - directions)
- **Root:** ε
- **Children:** xd, $x \in D^*$, $d \in D$

Labeled Infinite Tree: $\tau : D^* \rightarrow \Sigma$

Strategy: $f : (2^I)^* \rightarrow 2^O$

Rabin’s insight: A strategy is a labeled tree with directions $D = 2^I$ and alphabet $\Sigma = 2^O$.

Example: $I = \{p\}$, $O = \{q\}$

![Diagram of a labeled tree with two levels of nodes labeled p, q, and \overline{p}, \overline{q}, and branches leading to the root ε.]

Winning: Every branch satisfies spec.
Rabin Automata on Infinite k-ary Trees

$A = (\Sigma, S, S_0, \rho, \alpha)$

- Σ: finite alphabet
- S: finite state set
- $S_0 \subseteq S$: initial state set
- ρ: transition function
 - $\rho : S \times \Sigma \rightarrow 2^{S^k}$
- α: acceptance condition
 - $\alpha = \{(G_1, B_1), \ldots, (G_l, B_l)\}$, $G_i, B_i \subseteq S$
 - **Acceptance**: along every branch, for some $(G_i, B_i) \in \alpha$, G_i is visited infinitely often, and B_i is visited finitely often.
Emptiness of Tree Automata

Emptiness: \(L(A) = \emptyset \)

Emptiness of Automata on Finite Trees: PTIME test (Doner, 1965)

Emptiness of Automata on Infinite Trees: Difficult

- Rabin, 1969: non-elementary
- Hossley+Rackoff, 1972: 2EXPTIME
- Rabin, 1972: EXPTIME
- Emerson, V.+Stockmeyer, 1985: In NP
- Emerson+Jutla, 1991: NP-complete
Rabin’s Realizability Algorithm

\textbf{REAL}(\varphi): \hspace{1cm}

- Construct Rabin tree automaton A_φ that accepts all winning strategy trees for spec φ.

- Check non-emptiness of A_φ.

- If nonempty, then we have realizability; extract strategy from non-emptiness witness.

\textbf{Complexity}: non-elementary

\textit{Reason}: A_φ is of non-elementary size for spec φ in MSO.
Post-1972 Developments

- V.+Wolper, 1983: Elementary (exponential) translation from LTL to automata.

- Rosner, 1990: Realizability is 2EXPTIME-complete.
Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response:

• 2EXPTIME is just worst-case complexity.

• 2EXPTIME lower bound implies a doubly exponential bound on the size of the smallest strategy; thus, hand design cannot do better in the worst case.
Classical AI Planning

Deterministic Finite Automaton (DFA)

\[A = (\Sigma, S, s_0, \rho, F) \]

- **Alphabet**: \(\Sigma \)
- **States**: \(S \)
- **Initial state**: \(s_0 \in S \)
- **Transition function**: \(\rho : S \times \Sigma \rightarrow S \)
- **Accepting states**: \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \) **Run**: \(s_0, s_1, \ldots, s_n \)

- \(s_{i+1} = \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \).

Planning Problem: Find word leading from \(s_0 \) to \(F \).

- **Realizability**: \(L(A) \neq \emptyset \)
- **Program**: \(w \in L(A) \)
Dealing with Nondeterminism

Nondeterministic Finite Automaton (NFA)

\[A = (\Sigma, S, s_0, \rho, F) \]

- **Alphabet**: \(\Sigma \)
- **States**: \(S \)
- **Initial state**: \(s_0 \in S \)
- **Transition function**: \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states**: \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \)

Run: \(s_0, s_1, \ldots, s_n \)

- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \).

Planning Problem: Find word leading from \(s_0 \) to \(F \).

- **Realizability**: \(L(A) \neq \emptyset \)
- **Program**: \(w \in L(A) \)
Automata on Infinite Words

Nondeterministic Büchi Automaton (NBW)

\[A = (\Sigma, S, s_0, \rho, F) \]

- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial state:** \(s_0 \in S \)
- **Transition function:** \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states:** \(F \subseteq S \)

Input word:

\(a_0, a_1, \ldots \)

Run:

\(s_0, s_1, \ldots \)

- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance:

\(F \) visited infinitely often

Motivation:

- characterizes \(\omega \)-regular languages
- equally expressive to MSO (Büchi 1962)
- more expressive than LTL
Examples

\((0 + 1) \cdot 1^\omega:\)

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\hline
0 \\
\hline
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\hline
0 \\
\hline
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\hline
1
\end{array}
\end{array}
\end{array}
\end{array}

\quad \text{– infinitely many 1’s}

\((0 + 1)^*1^\omega:\)

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\hline
0, 1 \\
\hline
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\hline
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\hline
1
\end{array}
\end{array}
\end{array}
\end{array}
\]

\quad \text{– finitely many 0’s}
Infinitary Planning

Planning Problem: Given NBW $A = (\Sigma, S, s_0, \rho, F)$, find infinite word $w \in L(A)$

From Automata to Graphs: $G_A = (S, E_A)$,
$E_A = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\}$.

Lemma: $L(A) \neq \emptyset$ iff there is a state $f \in F$ such that G_A contains a path from s_0 to f and a cycle from f to itself.

Corollary: $L(A) \neq \emptyset$ iff there are finite words $u, v \in \Sigma^*$ such that $uv^\omega \in L(A)$.

Bonus: Finite-state program.

Synthesized Program: Do u and then repeatedly do v.

Temporal Logic vs. Büchi Automata

Paradigm: Compile high-level logical specifications into low-level finite-state language

The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula φ, one can construct an NBW A_φ such that a computation σ satisfies φ if and only if σ is accepted by A_φ. Furthermore, the size of A_φ is at most exponential in the length of φ.

always eventually p:

\[
\begin{array}{c}
\text{always} \\
\text{eventually} \\
p
\end{array}
\]

\[
\begin{array}{c}
\text{always} \\
\text{eventually} \\
p
\end{array}
\]

\[
\begin{array}{c}
\text{always} \\
\text{eventually} \\
p
\end{array}
\]

eventually always p:

\[
\begin{array}{c}
\text{eventually} \\
\text{always} \\
p
\end{array}
\]

\[
\begin{array}{c}
\text{eventually} \\
\text{always} \\
p
\end{array}
\]

\[
\begin{array}{c}
\text{eventually} \\
\text{always} \\
p
\end{array}
\]

\[
\begin{array}{c}
\text{eventually} \\
\text{always} \\
p
\end{array}
\]
LTL Planning

- **Input** LTL formula φ
- **Planning Problem**: Find word $w \models \varphi$
- **Realizability**: φ is satisfiable.
- **Solution**: Solve infinitary planning with A_φ
Synthesis of Reactive Systems

Game Semantics: view an open system S as playing a game with an adversarial environment E, with the specifications being the winning condition.

DFA Games:
- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- **Round:** S and E set their values
- **Play:** word in $(\Sigma \times \Delta)^*$
- **Specification:** DFA A over the alphabet $\Sigma \times \Delta$
- S wins when play is accepted by A.

Realizability and Synthesis:
- **Strategy** for S – $\tau : \Delta^* \rightarrow \Sigma$
- **Realizability** – exists *winning* strategy for S
- **Synthesis** – obtain such winning strategy.
Solving DFA Games

\[A = (\Sigma \times \Delta, S, s_0, \rho, F) \]

Define \(\text{win}_i(A) \subseteq S \) inductively:

- \(\text{win}_0(A) = F \)
- \(\text{win}_{i+1}(A) = \text{win}_i(A) \cup \{ s : (\exists a \in \Sigma)(\forall b \in \Delta) \rho(s, (a, b)) \in \text{win}_i(A) \} \)

Lemma: \(S \) wins the \(A \) game iff \(s_0 \in \text{win}_\infty(A) \).

Bottom Line: linear-time, least-fixpoint algorithm for DFA realizability. What about synthesis?
Transducers

Transducer: a finite-state representation of a strategy—deterministic automaton with output

\[T = (\Delta, \Sigma, Q, q_0, \alpha, \beta) \]

- \(\Delta \): input alphabet
- \(\Sigma \): output alphabet
- \(Q \): states
- \(q_0 \): initial state
- \(\alpha : S \times \Delta \to S \): transition function
- \(\beta : S \to \Sigma \): output function

Key Observation: A transducer representing a winning strategy can be extracted from

\(\text{win}_0(A), \text{win}_1(A), \ldots \)
Reachability Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- v_s: start node
- $W \subseteq V_0 \cup V_1$: winning set
- Player 0 moves from V_0, Player 1 moves from V_1.
- Player 0 wins: reach W.

Fact: Reachability games can be solved in linear time – least fixpoint algorithm

Consequence: realizability and synthesis
NFA Games

NFA Games:
- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- **Round:** S and E set their variables
- **Play:** word in $(\Sigma \times \Delta)^*$
- **Specification:** NFA A over the alphabet $\Sigma \times \Delta$
- S wins when play is accepted by A.

Solving NFA Games: *Basic mismatch* between nondeterminism and strategic behavior.
- Nondeterministic automata have perfect foresight.
- Strategies have no foresight.

Conclusion: Determinize A and then solve.
NBW Games

NBW Games:
- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- **Round:** S and E set their variables
- **Play:** infinite word in $(\Sigma \times \Delta)^\omega$
- **Specification:** NBW A over the alphabet $\Sigma \times \Delta$
- S wins when infinite play is accepted by A.

Resolving the mismatch: Determinize A

LTL Games:
- **Specification:** LTL formula φ
- **Solution:** Construct A_{φ} and determinize.

History:
- Church, 1957: problem posed (for MSO)
- Büchi-Landweber, 1969: decidability shown
- Rabin, 1972: solution via tree automata
Determinization

Key Fact (Landweber, 1969): Nondeterministic Büchi automata are more expressive than deterministic Büchi automata.

Example: $(0 + 1)^*1^\omega$:

```
  1
─┼─  
0, 1 1
```

– finitely many 0’s

McNaughton, 1966: NBW can be determinized using more general acceptance condition – blow-up is *doubly exponential*.
Parity Automata

Deterministic Parity Automata (DPW)

\[A = (\Sigma, S, s_0, \rho, F) \]
- \(F = (F_1, F_2, \ldots, F_k) \) - partition of \(S \).
- **Parity index**: \(k \)
- **Acceptance**: Least \(i \) such that \(F_i \) is visited infinitely often is even.

Example: \((0 + 1)^*1^\omega\)

\[
\begin{array}{c}
1 \\
\downarrow \\
0 \\
\hline
0 \\
\hline
1 \\
\end{array}
\]

– finitely many 0’s

Parity condition: \([\{\ell\}, \{r\}]\)

Safra, 1988: NBW with \(n \) states can be translated to DPW with \(n^{O(n)} \) states and index \(O(n) \).
Parity Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- v_s: start node
- $W \subseteq V_0 \cup V_1$: winning set
- Player 0 moves from V_0,
- Player 1 moves from V_1.
- $W = (W_1, W_2, \ldots, W_k)$ – partition of $V_0 \cup V_1$
- Play 0 wins: least i such that W_i is visited infinitely often is even.

Solving Parity Games: complexity
- Jurdzinski, 1998: $UP \cap co-UP$
- Jurdzinski, 2000: $n^{O(k)}$
- Jurdzinski+Petterson+Zwick, 2000: $n^{O(\sqrt{n})}$

Open Question: In PTIME?
LTL Synthesis

Algorithm for LTL Synthesis:
- Convert specification φ to NBW A_φ (exponential blow-up)
- Convert NBW A_φ to DPW A^d_φ (exponential blow-up)
- Solve parity game for A^d_φ (exponential)

Pnueli-Rosner, 1989: LTL realizability and synthesis is 2EXPTIME-complete.

- **Transducer**: finite-state program with doubly exponentially many states (exponentially many state variables)
Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice:

- Mona: MSO on finite words
- Linear-Time Model Checking: LTL on infinite words

Experiments with Automata-Theoretic Approach:

- Symbolic decision procedure for CTL (Marrero 2005)
- Symbolic synthesis using NBT (Wallmeier-Hütten-Thomas 2003)

Why no implementation of LTL synthesis?

- *NBW determinization is hard in practice*: from 9-state NBW to 1,059,057-state DRW (Althoff-Thomas-Wallmeier 2005)
- *NBW determinization is hard in practice*: no symbolic algorithms
- lack of incremental algorithms

2EXPTIME: Should not be an insurmountable problem.
A Safraless Approach

Kupferman-V., 2005:

- Limit search to strategy trees that are generated by transducers of bounded size
 - Existence of bounded-size transducers follows from the Safraful approach
- Construct recurrence games that are generated by bounded-size transducers
- Solve recurrence games

Crux: focus on subset of strategies

- No determinization
- No parity games
Recurrence Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- v_s: start node
- $W \subseteq V_0 \cup V_1$: winning set
- Player 0 moves from V_0,
 Player 1 moves from V_1.
- Player 0 wins: *infinitely many* visits to W.

Fact: Recurrence games can be solved in quadratic time—greatest fixpoint of reachability.

Consequence: reachability and synthesis.
Safraless vs. Safraful

Question: Is the new approach practical?

Answer: Experimentation needed!

Promise:

- Approach shown practical (after optimization) for Büchi complementation
- Symbolic approach possible
- First implementation report in FMCAD’06 (Jobstmann-Bloem)
Incremental Synthesis

Basic Weakness of Synthesis: full specifications required to get started – unrealistic!

- Specifications evolve!

Incremental Synthesis: Suppose we synthesized programs for specifications φ and ψ, can we get programs for $\varphi \land \psi$ *without* starting from scratch.

Kupferman-Piterman-V., 2006: Use realizability proofs for φ and ψ as starting point for realizability testing and synthesis for $\varphi \land \psi$.

Discussion

Question: Can we hope to reduce a 2EXPTIME-complete approach to practice?

Answer:

- Worst-case analysis is pessimistic.
 - Mona solves nonelementary problems.
 - SAT-solvers solve huge NP-complete problems.
 - Model checkers solve PSPACE-complete problems.
 - Doubly exponential lower bound for program size.

- We need algorithms that blow up only on hard instances

- Algorithmic engineering is needed.
Verification and Planning

Some Crossfertilization:

- From planning to verification: *bounded model checking*

- From verification to planning: *OBDDs, temporal goals*

More collaboration needed!