Learning for Control from Multiple Demonstrations

Adam Coates, Pieter Abbeel, and Andrew Y. Ng
Stanford University

ICML 2008
Motivating example

- How do we specify a task like this???
We want a robot to follow a desired trajectory.
Key difficulties

- Often very difficult to specify trajectory by hand.
 - Difficult to articulate exactly how a task is performed.
 - The trajectory should obey the system dynamics.
- Use an expert demonstration as trajectory.
 - But, getting perfect demonstrations is hard.
- Use multiple suboptimal demonstrations.
Outline

- Generative model for multiple suboptimal demonstrations.
- Learning algorithm that extracts:
 - Intended trajectory
 - High-accuracy dynamics model
- Experimental results:
 - Enabled us to fly autonomous helicopter aerobatics well beyond the capabilities of any other autonomous helicopter.
Expert demonstrations: Airshow
Graphical model

Intended trajectory
\[z_{t+1} = f(z_t) + \omega_t \]

Expert demonstrations
\[y_j = z_{\tau_j} + \nu_j \]

Time indices

- Intended trajectory satisfies dynamics.
- Expert trajectory is a noisy observation of one of the hidden states.
 - But we don’t know exactly which one.
Learning algorithm

- Similar models appear in speech processing, genetic sequence alignment.
 - See, e.g., Listgarten et al., 2005
- Maximize likelihood of the demonstration data over:
 - Intended trajectory states
 - Time index values
 - Variance parameters for noise terms
 - Time index distribution parameters
Learning algorithm

If τ is unknown, inference is hard.

If τ is known, we have a standard HMM.

- Make an initial guess for τ.
- Alternate between:
 - Fix τ. Run EM on resulting HMM.
 - Choose new τ using dynamic programming.
Details: Incorporating prior knowledge

- Might have some limited knowledge about how the trajectory should look.
 - Flips and rolls should stay in place.
 - Vertical loops should lie in a vertical plane.
 - Pilot tends to “drift” away from intended trajectory.
Results: Time-aligned demonstrations

- White helicopter is inferred “intended” trajectory.
Results: Loops

- Even without prior knowledge, the inferred trajectory is much closer to an ideal loop.
Recap

Data → Dynamics Model

Trajectory + Penalty Function → Reward Function

Reward Function → Reinforcement Learning

Reinforcement Learning → Policy
Standard modeling approach

- Collect data
 - Pilot attempts to cover all flight regimes.
- Build global model of dynamics

![Graph showing Z acceleration error over time with a marked 3G error](image-url)
Errors aligned over time

- Errors observed in the “crude” model are clearly consistent after aligning demonstrations.
Model improvement

- Key observation:
 If we fly the same trajectory repeatedly, errors are consistent over time once we align the data.

- There are many hidden variables that we can’t expect to model accurately.
 - Air (!), rotor speed, actuator delays, etc.

- If we fly the same trajectory repeatedly, the hidden variables tend to be the same each time.
Trajectory-specific local models

- Learn locally-weighted model from aligned demonstration data.
 - Since data is aligned in time, we can weight by *time* to exploit repeatability of hidden variables.
 - For model at time \(t \): \(W(t') = \exp(- (t - t')^2 / \sigma^2) \)

- Suggests an algorithm alternating between:
 - Learn trajectory from demonstration.
 - Build new models from aligned data.

- Can actually infer an improved model *jointly* during trajectory learning.

heli.stanford.edu

Adam Coates, Pieter Abbeel, Andrew Y. Ng
Experiment setup

- Expert demonstrates an aerobatic sequence several times.
 - Inference algorithm extracts the intended trajectory, and local models used for control.

- We use a receding-horizon DDP controller.
 - Generates a sequence of closed-loop feedback controllers given a trajectory + quadratic penalty.
Related work

- Bagnell & Schneider, 2001; LaCivita, Papageorgiou, Messner & Kanade, 2002; Ng, Kim, Jordan & Sastry 2004a (2001);
- Gavrilets, Martinos, Mettler and Feron, 2002; Ng et al., 2004b.
- Abbeel, Coates, Quigley and Ng, 2007.

- Maneuvers presented here are significantly more challenging and more diverse than those performed by any other autonomous helicopter.
Results: Autonomous airshow
Results: Flight accuracy
Conclusion

- Algorithm leverages multiple expert demonstrations to:
 - Infer intended trajectory
 - Learn better models along the trajectory for control.

- First autonomous helicopter to perform extreme aerobatics at the level of an expert human pilot.