SIMILARITY WORD-SEQUENCE KERNELS FOR SENTENCE CLUSTERING

Jesús Andrés-Ferrer, G. SANCHÍS-TRILLES AND F. CASACUBERTA { jandres, gsanchis, fcn}@disc.upv.es

Contents

1	Introduction	1
2	C-means clustering 2.1 Kernel-based C-means clustering 2.2 Similarity Kernel-based C-means clustering	
3	Word-sequence kernels (WSK) 3.1 0-1 WSK 3.2 Normalized WSK 3.3 Sum WSK 3.4 Examples 3.5 Examples 3.6 Examples 3.7 Examples	8 9 10 11
4	Bilingual word-sequence kernels (BWSK)	14
5	Experiments 5.1 Corpora	15 15 16
6	Conclusions	22

1 Introduction

Text classification: classify a given document or text ${\bf x}$ into a class ${\bf c}$ from a known set classes	0
☐ Text clustering: the set of classes is unknown	
Sentence clustering: each document or text is composed by one sentence	
Bilingual sentence clustering: the same sentence in two different languages	
O Motivation [for (bilingual) sentence clustering]:	
☐ Training specific models	
Domain adaptation	
Reduction in time complexity	
Properties of clustering:	
☐ It is a NP-Hard problem	
$\hfill\Box$ A distance between objects (documents) is needed $\mathrm{d}(\mathbf{x},\mathbf{x}')$	
$lue{}$ Lloyd's algorithm or C -means is a fast and sub-optimal algorithm	
☐ It is unable to find suitable clusters whenever the given data are not linearly separable	

$lue{ extstyle extstyle$	
$\hfill \square$ Map the objects x and x' into a higher dimensionality domain in which can be linearly separable	
$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}'), \tag{1}$	
$\ \square \ \phi(\mathbf{x})$ is the mapping function to a higher-dimensionality feature space	
O Since Kernels are symmetric, some could be used as similarity (or distance) functions: $k(\mathbf{x},\mathbf{x}') = k(\mathbf{x}',\mathbf{x})$	=

We present a clustering algorithm that uses kernels as similarity functions

2 C-means clustering

- O The minimization of a "distance" is a common criterion for clustering:
 - \square Given a set of samples: $\{\mathbf{x}_n\}_1^N$ and a number of clusters C
 - \square Find the set of index variables $\{z_n\}$ that minimize:

$$\hat{\mathbf{z}} = \arg\min_{\mathbf{z}} \left\{ \frac{1}{N} \sum_{c=1}^{C} \sum_{n=1}^{N} z_{nc} \, \mathrm{d}(\mathbf{x}_n, \mathbf{m}_c) \right\}, \tag{2}$$

with:

$$ightharpoonup \mathbf{m}_c = \frac{1}{N_c} \sum_{n=1}^{N} z_{nc} \mathbf{x}_n$$

$$> N_c = \sum_{n=1}^N z_{nc}$$

• The *C*-means algorithm seeks to find a local minimum for the **2-norm**:

$$d(\mathbf{x}_n, \mathbf{m}_c) = (\mathbf{x}_n - \mathbf{m}_c)^T (\mathbf{x}_n - \mathbf{m}_c).$$
(3)

• The distance used by the C-means algorithm can either be a pseudo-metric or a semi-metric

2.1 Kernel-based *C*-means clustering

- C-means can be extended with Mercer Kernels:
 - ☐ Change the distance function by:

$$d(\mathbf{x}_n, \mathbf{m}_c) = (\phi(\mathbf{x}_n) - \mathbf{m}_c)^T (\phi(\mathbf{x}_n) - \mathbf{m}_c),$$
(4)

- \Box with $\mathbf{m}_c = \frac{1}{N_c} \sum_{n=1}^{N} \mathbf{z}_{nc} \phi(\mathbf{x}_n)$
- Kernels verify the symmetric requirement to be a pseudo-metric, additional requirements:
 - □ Positiveness
- O For being a **semi-metric**:
 - □ pseudo-metric
 - ☐ Identity of indiscernibles
- For being a *metric*:
 - □ semi-metric
 - ☐ Triangle inequality
- Kernels are more naturally redefined as similarity functions
- Given a distance, a similarity can be defined and vice-versa.

2.2 Similarity Kernel-based C-means clustering

- O Kernels are more naturally redefined as similarity functions
- O Given a distance, a similarity can be defined and vice-versa
- Or-means can be re-defined in terms of similarity:

$$\hat{\mathbf{z}} = \arg\max_{\mathbf{z}} \left\{ \frac{1}{N} \sum_{c=1}^{C} \sum_{n=1}^{N} z_{nc} \, \mathbf{s}(\mathbf{x}_n, \mathbf{m}_c) \right\}, \tag{5}$$

• with:

$$\square$$
 $\mathbf{m}_c = \frac{1}{N_c} \sum_{n=1}^{N} z_{nc} \phi(\mathbf{x}_{nc})$,

$$\square s(\mathbf{x}_n, \mathbf{m}_c) = \phi(\mathbf{x}_{nc})^T \mathbf{m}_c$$

We propose several similarity kernels for text clustering

3 Word-sequence kernels (WSK)

- O Compute strings similarity based on matching (non-)consecutive sequences of symbols
- O Define a mapping: $\Sigma^n \to \mathbb{R}^{|\Sigma|^n}$,
- where:
 - \square n: the maximum length of the segment to be considered
- \bigcirc For a given order n and a pair of documents \mathbf{x} , and \mathbf{x}' :

$$K_n(\mathbf{x}, \mathbf{x}') = \sum_{u \in \Sigma^n} |\mathbf{x}|_u |\mathbf{x}'|_u, \tag{6}$$

- \bigcirc where $|\mathbf{x}|_u$ is the number of occurrences of u in document \mathbf{x}
- Neither it is a semi-similarity, nor a pseudo-similarity

3.1 0-1 WSK

 \bigcirc We define the kernel K_n^1 as follows:

$$K_n^1(\mathbf{x}, \mathbf{x}') = \sum_{u \in \Sigma^n} 1_u(\mathbf{x}) 1_u(\mathbf{x}'), \tag{7}$$

- O with $1_u(\mathbf{x}) = \begin{cases} 1 & \text{if } u \text{ occurs in } \mathbf{x} \\ 0 & \text{otherwise} \end{cases}$
- O It is not a semi-similarity
- O It is a pseudo-similarity
- It behave like a semi-similarity in practice

3.2 Normalized WSK

- We can normalize the both kernels, WSK and 0-1 WSK
 - □ WSK:

$$\hat{K}_n(\mathbf{x}, \mathbf{x}') = \sum_{u \in \Sigma^n} \frac{|\mathbf{x}|_u}{\sqrt{\sum_{v \in \Sigma^n} |\mathbf{x}|_v}} \frac{|\mathbf{x}'|_u}{\sqrt{\sum_{v \in \Sigma^n} |\mathbf{x}'|_v}}$$
(8)

➤ It is not a semi-similarity

□ 0–1 WSK:

$$\hat{K}_n^1 = \sum_{u \in \Sigma^n} \frac{1_u(\mathbf{x})}{\sqrt{\sum_{v \in \Sigma^n} 1_v(\mathbf{x})}} \frac{1_u(\mathbf{x}')}{\sqrt{\sum_{v \in \Sigma^n} 1_v(\mathbf{x}')}}$$
(9)

➤ It is a semi-similarity

3.3 Sum WSK

 \bigcirc n-grams are very sparse for large values of n

 \bigcirc \bar{K}_n is defined as

$$\bar{K}_n(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^n \hat{K}_i(\mathbf{x}, \mathbf{x}'). \tag{10}$$

 $oldsymbol{\bigcirc} ar{K}^1_n$ is defined as

$$\bar{K}_n^1(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^n \hat{K}_i^1(\mathbf{x}, \mathbf{x}'). \tag{11}$$

3.4 Examples

O Consider the following 4 strings:

$$\mathbf{s}_1 = \{abcb\}$$
 $\mathbf{s}_2 = \{abab\}$ $\mathbf{s}_3 = \{abeb\}$ $\mathbf{s}_4 = \{abcbab\}$

 \bigcirc "s₁ is as similar to s₂ as to s₃" (Assuming Levenshtein distance)

3.5 Examples

O Consider the following 4 strings:

$$\mathbf{s}_1 = \{abcb\}$$
 $\mathbf{s}_2 = \{abab\}$ $\mathbf{s}_3 = \{abeb\}$ $\mathbf{s}_4 = \{abcbab\}$

- \bigcirc "s₁ is as similar to s₂ as to s₃" (Assuming Levenshtein distance)
- \bigcirc Analise $K_2(\ldots)$
 - $\square K_2(\mathbf{s}_1, \mathbf{s}_2) = 2 \text{ and } K_2(\mathbf{s}_1, \mathbf{s}_3) = 1$
 - $\square K_2(\mathbf{s}_1, \mathbf{s}_4) = 4 > K_2(\mathbf{s}_1, \mathbf{s}_1) = 3$

3.6 Examples

O Consider the following 4 strings:

$$\mathbf{s}_1 = \{abcb\}$$
 $\mathbf{s}_2 = \{abab\}$ $\mathbf{s}_3 = \{abeb\}$ $\mathbf{s}_4 = \{abcbab\}$

- \bigcirc "s₁ is as similar to s₂ as to s₃" (Assuming Levenshtein distance)
- \bigcirc Analise $K_2(\ldots)$
 - $\square K_2(\mathbf{s}_1, \mathbf{s}_2) = 2 \text{ and } K_2(\mathbf{s}_1, \mathbf{s}_3) = 1$
 - $\square K_2(\mathbf{s}_1, \mathbf{s}_4) = 4 > K_2(\mathbf{s}_1, \mathbf{s}_1) = 3$
- \bigcirc Analise $K_2^1(\ldots)$
 - $\square K_2^1(\mathbf{s}_1,\mathbf{s}_2) = 1 \text{ and } K_2^1(\mathbf{s}_1,\mathbf{s}_3) = 1$
 - $\square K_2^1(\mathbf{s}_1,\mathbf{s}_1) = 3 \text{ and } K_2^1(\mathbf{s}_1,\mathbf{s}_4) = 3$

3.7 Examples

O Consider the following 4 strings:

$$\mathbf{s}_1 = \{abcb\}$$
 $\mathbf{s}_2 = \{abab\}$
 $\mathbf{s}_3 = \{abeb\}$ $\mathbf{s}_4 = \{abcbab\}$

- \bigcirc "s₁ is as similar to s₂ as to s₃" (Assuming Levenshtein distance)
- \bigcirc Analise $K_2(\ldots)$
 - $\square K_2(\mathbf{s}_1, \mathbf{s}_2) = 2$ and $K_2(\mathbf{s}_1, \mathbf{s}_3) = 1$
 - $\square K_2(\mathbf{s}_1, \mathbf{s}_4) = 4 > K_2(\mathbf{s}_1, \mathbf{s}_1) = 3$
- \bigcirc Analise $K_2^1(\ldots)$
 - $\square K_2^1(\mathbf{s}_1,\mathbf{s}_2) = 1$ and $K_2^1(\mathbf{s}_1,\mathbf{s}_3) = 1$
 - $\square K_2^1(\mathbf{s}_1,\mathbf{s}_1) = 3 \text{ and } K_2^1(\mathbf{s}_1,\mathbf{s}_4) = 3$
- $oldsymbol{\bigcirc}$ Analise $\hat{K}_2^1(\ldots)$
 - $\ \ \ \ \ \hat{K}^{1}_{2}(\mathbf{s}_{1},\mathbf{s}_{1})=1$ which is larger than $\hat{K}^{1}_{2}(\mathbf{s}_{1},\mathbf{s}_{4})=0.866$
 - ☐ Identity of indiscernibles, a required property to assure *C*-means convergence
- $oldsymbol{\bigcirc}$ The Kernel $\hat{K}_2(\ldots)$ reduces the cases for which it is not a semi-metric

4 Bilingual word-sequence kernels (BWSK)

- O Previous WSK can be extended to bilingual documents:
 - \square w = {x,y} a bilingual sentence pair
 - > x is a source sentence
 - > y is a target sentence [a translation of source sentence]
 - \Box Define the mapping: $\Sigma \times \Delta \to \mathbb{R}^{|\Sigma|^n} \times \mathbb{R}^{|\Delta|^n}$:

$$B_n(\mathbf{w}, \mathbf{w}') = K_n(\mathbf{x}, \mathbf{x}') + K_n(\mathbf{y}, \mathbf{y}') = \sum_{u \in \Sigma^n} |\mathbf{x}|_u |\mathbf{x}'|_u + \sum_{v \in \Delta^n} |\mathbf{y}|_v |\mathbf{y}'|_v$$
(12)

- ☐ Similarly the following kernels are defined:
 - $> B_n^1(\mathbf{w}, \mathbf{w}')$
 - $> \hat{B}_n^1(\mathbf{w}, \mathbf{w}')$
 - $> \bar{B}_n^1(\mathbf{w}, \mathbf{w}')$
 - $> \hat{B}_n(\mathbf{w}, \mathbf{w}')$
 - $\triangleright \bar{B}_n(\mathbf{w}, \mathbf{w}')$

5 Experiments

5.1 Corpora

- O 2 corpora were used:
 - □ BTEC (Basic Travel Expression Corpus) [Chinese-English]

Language	N. Sentences	Running words	Vocabulary	Perplexity
Chinese	20K	172K	8428	24.3
English	20K	183K	7298	20.8

☐ Europarlv3 with sentence length smaller or equal to 20 [Spanish-English]

Language	N. Sentences	Running words	Vocabulary	perplexity
Spanish	312K	4.0M	58K	28.2
English	312K	3.9M	37K	26.7

- All singletons were filtered out from training data [No effect]
- Stop-words were also filtered

5.2 Evaluation metric

- Typically, average intra-cluster distance/similarity is used to asses cluster quality
- Orange of the control of the cont
- 2 alternative measures:
 - ☐ Intra-cluster perplexity (IC-PPL) average:

$$ppl_{avg} = 2^{\sum_{c=1}^{C} \frac{1}{C} \frac{1}{W_c} \log_2 p(c)},$$
 (13)

- ightharpoonup with p(c) is the probability of the samples of cluster c according to the language model estimated on that same cluster
- ☐ Edit distance [Equivalent in practice]
- IC-PPL for 5-grams in the English part is used through the experiments
- LM where smoothed with the interpolated modified Kneser-Ney smoothing technique

BTEC [Chinese-English] $ar{K}_2^1$ and $ar{B}_2^1$

BTEC [Chinese-English] \bar{B}_n^1

Euro<20 [Spanish-English] $ar{B}_2^1$

Why
$$n = 2$$
 ?

- 2-grams give more structural information than 1-grams
- O But 3, 4-grams give even more structural information
- Singletons and doubletons statistics
- Single stands for singletons and double for doubletons
- All figures are in %

	1-grams		2-grams		3-grams		4-grams	
Corpus	single	double	single	double	single	double	single	double
BTEC	43.8	14.0	65.3	13.6	79.0	10.5	87.5	7.5
Euro<20	36.7	13.3	62.7	13.3	78.9	9.8	88.4	6.2

○ Almost all the 3, 4-grams are not informative or little informative

6 Conclusions

- \bigcirc Kernels have been used as similarity measure in a clustering algorithm (C-means)
- Several families of kernels suitable for this task have been described
- $oldsymbol{\bigcirc}$ The kernels $ar{B}_2$ and $ar{B}_2^1$ perform the best in practice
- O No practical difference among $K_n^1(...)$ and $K_n(...)$ families
- In order to take advantage of bilingual information cluster sizes need to be large
- IC-PPL does not provide insight towards deciding the optimal number of clusters
- Which is the relationship between the distance and similarity clustering algorithms?
- Additional factors can be used in a bilingual-like extension
- \bigcirc Add stochastic indexing information by making $\mathbf{z}_n \in [0.0, 1.0]$

Thank you!