Channel Coding with LDPC codes

Fernando Pérez-Cruz

University Carlos III in Madrid

April 2012
Main Results in Information Theory

- Achievable Source Encoding:
 \[R \geq H(M) \]

- Reliable Transmission Rate:
 \[R \leq I(X; Y) \]

- Separation Principle: No loss of optimality if perform separately.
Channel Encoding

- The source (encoder) provides symbols $\mathbf{m} \in \{1, 2, \ldots, M\}$
- The channel encoder assigns them a bitstream of n symbols:
 $$\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]$$
- If the messages are also binary symbols:
 $$\mathbf{m} = [m_1 \ m_2 \ \cdots \ m_k]$$
- The rate is given by:
 $$R = \frac{\log_2 M}{n} = \frac{k}{n}$$
Linear Channel Encoding

- Linear transformation from source bits to encoded bits:

 \[x = mG = m[I \ P] \]

 \(G \) is a \(k \times n \) matrix that adds \(n - k \) redundancy bits to \(m \).

- Independent channel realizations:

 \[y_i = x_i + z_i \quad \forall i = 1, \ldots, n, \]

 \(z_i \) is iid noise.

- At the channel decoder we want to recover \(x \) from \(y \).

 \[\hat{x} = \arg\max_{x \ a \ CW} p(y|x) = \arg\max_{x \ a \ CW} \prod_{\ell=1}^{n} p(y_{\ell}|x_{\ell}) \]
Syndrome and Parity Check Matrix

- The dual space of the linear space G:
 \[H = [-P^\top \ I] \]

- Syndrome:
 \[s = yH^\top = (x + z)H^\top = zH^\top \]

- Why is $xH^\top = 0$?

- s uniquely identifies the error pattern.

- s has 2^{n-k} entries.
Solutions to Channel Coding

- **Algebraic Code (40’s-70’s):**
 - Linear encoding and decoding
 - Limited to minimum distance.

- **Convolutional Codes (60’s-80’s):**
 - Linear encoding and decoding.
 - Decoding exponential in the memory.

- **LDPC and Turbo Codes (63 & 90’s-10’s):**
 - Almost linear encoding and decoding.
 - Almost achieve capacity.
Tanner Graph (Factor Graph)

- Given a parity Check Matrix

\[
H = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{bmatrix},
\]

what do we know?

- What restriction do we have over \(x_1, x_5, x_6\) and \(x_7\)?
Tanner Graph (Factor Graph)

- Given a parity Check Matrix

\[
H = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{bmatrix},
\]

what do we know?

- What restriction do we have over \(x_1, x_5, x_6, \) and \(x_7\)?

- and over \(x_2, x_4, x_6, \) and \(x_7\)? or \(x_3, x_4, x_5, \) and \(x_7\)?
Given a parity Check Matrix

\[
H = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\end{bmatrix},
\]

what do we know?

What restriction do we have over \(x_1, x_5, x_6\) and \(x_7\)?

and over \(x_2, x_4, x_6\) and \(x_7\)? or \(x_3, x_4, x_5\) and \(x_7\)?

Remember that:

\[
xH^\top = 0
\]

Hence?
Bipartite Graph
Bipartite Graph
Maximum Likelihood Decoder

▶ ML solution:

$$\hat{x} = \arg\max_{x \in \mathcal{C}} p(y|x) = \arg\max_{x} \prod_{\ell=1}^{n} p(y_{\ell}|x_{\ell}) \prod_{j=1}^{n-k} \delta(x_{h_{j}}^{\top} = 0)$$

▶ ML solution is exponential in n.

▶ Bitwise MAP solution:

$$\hat{x}_i = \arg\max_{x_i \in \{0,1\}} p(x_i|y) = \arg\max_{v \in \{0,1\}} \sum_{x} \prod_{\ell=1}^{n} p(y_{\ell}|x_{\ell}) \prod_{j=1}^{n-k} \delta(x_{h_j}^{\top} = 0)$$

▶ Still exponential in n, but ...
Computing \(p(x_i) \)

- If we ignore the graph structure:

 \[
 p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{1}{p(y)} \frac{1}{2^k} \prod_{\ell=1}^{n} p(y_\ell|x_\ell) \prod_{j=1}^{n-k} \delta(xh_j^\top = 0)
 \]

- For binary variables we need to compute \(2^n \) elements and perform \(2^n - 1 \) sums for computing:

 \[
 p(x_i = v|y) = \sum_{x} p(x|y) \quad \text{where} \quad x_i = v
 \]

- Can we use the graph structure to reduced this computational complexity?
Computing \(p(x_i) \)

- If we ignore the graph structure:

\[
p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{1}{p(y)} \frac{1}{2^k} \prod_{\ell=1}^{n} p(y_\ell|x_\ell) \prod_{j=1}^{n-k} \delta(xh_j^\top = 0)
\]

- For binary variables we need to compute \(2^n \) elements and perform \(2^n - 1 \) sums for computing:

\[
p(x_i = v|y) = \sum_{x} p(x|y) \bigg|_{x_i = v}
\]

- Can we use the graph structure to reduced this computational complexity?

- Yes, we can!
An Easy Example

\[p(x|y) \propto \prod_{\ell=1}^{7} p(y_{\ell}|x_{\ell}) \prod_{j=1}^{4} \delta(xh_{j}^\top = 0) \]

\[p(x_1) \propto \sum_{x_2,x_3,x_4 \atop x_5,x_6,x_7} f_A(x_1,x_2,x_3)f_B(x_2,x_5,x_6)f_C(x_5,x_7)f_D(x_3,x_4) \]

We can compute \(p(x_1) \) from:

\[p(x_1) \propto \sum_{x_2,x_3,x_4 \atop x_5,x_6,x_7} f_A(x_1,x_2,x_3)f_B(x_2,x_5,x_6)f_C(x_5,x_7)f_D(x_3,x_4) \]
An Easy Example

- We can express the sum as follows:

\[p(x_1) \propto \sum_{x_2, x_3} f_A(x_1, x_2, x_3) \sum_{x_4} f_D(x_3, x_4) \sum_{x_5, x_6} f_B(x_2, x_5, x_6) \sum_{x_7} f_C(x_5, x_7) \]

- We define:

\[r_{C \rightarrow x_5}(x_5) = \sum_{x_7} f_C(x_5, x_7) \]

\[r_{C \rightarrow x_5}(x_5 = 0) = f_C(x_5 = 0, x_7 = 0) + f_C(x_5 = 0, x_7 = 1) \]

\[r_{C \rightarrow x_5}(x_5 = 1) = f_C(x_5 = 1, x_7 = 0) + f_C(x_5 = 1, x_7 = 1) \]

- We need to compute 4 components and perform 2 sums.
An Easy Example

▶ We can express the sum as follows:

\[p(x_1) \propto \sum_{x_2, x_3} f_A(x_1, x_2, x_3) \sum_{x_4} f_D(x_3, x_4) \sum_{x_5, x_6} f_B(x_2, x_5, x_6) r_{C \rightarrow x_5}(x_5) \]

▶ Now we define:

\[r_{B \rightarrow x_2}(x_2) = \sum_{x_5, x_6} f_B(x_2, x_5, x_6) r_{C \rightarrow x_5}(x_5) \]

\[r_{D \rightarrow x_3}(x_3) = \sum_{x_4} f_D(x_3, x_4) \]

▶ We need to compute 8÷4 components and perform 6÷2 sums.
An Easy Example

- We can express the sum as follows:

\[p(x_1) \propto \sum_{x_2, x_3} f_A(x_1, x_2, x_3) r_{B \rightarrow x_2}(x_2) r_{D \rightarrow x_3}(x_3) \]

- Now we define:

\[r_{A \rightarrow x_1}(x_1) = \sum_{x_2, x_3} f_A(x_1, x_2, x_3) r_{B \rightarrow x_2}(x_2) r_{D \rightarrow x_3}(x_3) \]

- We need to compute 8 components and perform 6 sums.

- Leaving \(p(x_1) \propto r_{A \rightarrow x_1}(x_1) \) and:

\[p(x_1 = 1) = \frac{r_{A \rightarrow x_1}(x_1 = 1)}{r_{A \rightarrow x_1}(x_1 = 1) + r_{A \rightarrow x_1}(x_1 = 0)} \]
An Easy Example

- We have computed $p(x_1)$ computing 26 terms and performing 17 sums.

- The direct enumeration would lead to computing 128 terms and performing 127 sums.

- Moreover the proposed approach gives us the partition function:

$$Z = r_{A \rightarrow x_1}(x_1 = 0) + r_{A \rightarrow x_1}(x_1 = 1)$$

- For the other marginals we need to do a bit more work.

- **Drawback:** We need to sort the variables.
An Easy Example

- We have computed $p(x_1)$ computing 26 terms and performing 17 sums.
- The direct enumeration would lead to computing 128 terms and performing 127 sums.
- Moreover the proposed approach gives us the partition function:

$$Z = r_{A \rightarrow x_1}(x_1 = 0) + r_{A \rightarrow x_1}(x_1 = 1)$$

- For the other marginals we need to do a bit more work.
- **Drawback:** We need to sort the variables. Do we really?
Message Passing Algorithms

- We do not need to sort the variables in order to compute Z or the marginals.
- We can use only local computations in the graph to obtain these quantities.

Simple algorithm:

- The variables nodes tell each factors about themselves.
- The factors tell the variables what their value should be.
- Iterate until convergence.

Convergence is achieved in finite number of iterations.
Message Passing Algorithms

▶ Variable to factor:

- Send the unknown information about the factor.
- Send information to local factors.

▶ Factor to Variable:

- Send the unknown information about the variable.
- Send information to local variable nodes.
Message Passing Algorithms

▶ Variable to factor:

- Send the unknown information about the factor.
- Send information to local factors. x_2 to A, B and E_2.

▶ Factor to Variable:

- Send the unknown information about the variable.
- Send information to local variable nodes.
Message Passing Algorithms

▶ Variable to factor:

- Send the unknown information about the factor.
- Send information to local factors. x_2 to A, B and E_2.

▶ Factor to Variable:

- Send the unknown information about the variable.
- Send information to local variable nodes. A to x_1, x_2 and x_3.
Message Passing Algorithms

▶ Variable to factor:

- Send the unknown information about the factor.
- Send information to local factors. x_2 to A, B and E_2.

$$q_{x_2 \rightarrow A}(x_2) = r_{B \rightarrow x_2}(x_2)r_{E_2 \rightarrow x_2}(x_2)$$

▶ Factor to Variable:

- Send the unknown information about the variable.
- Send information to local variable nodes. A to x_1, x_2 and x_3.

Message Passing Algorithms

▶ Variable to factor:

- Send the unknown information about the factor.
- Send information to local factors. x_2 to A, B and E_2.

$$q_{x_2\rightarrow A}(x_2) = r_{B\rightarrow x_2}(x_2) r_{E_2\rightarrow x_2}(x_2)$$

▶ Factor to Variable:

- Send the unknown information about the variable.
- Send information to local variable nodes. A to x_1, x_2 and x_3.

$$r_{A\rightarrow x_2}(x_2) = \sum_{x_1, x_3} f_A(x_1, x_2, x_3) q_{x_1\rightarrow A}(x_1) q_{x_3\rightarrow A}(x_3)$$
Message Passing Algorithms

- **Variable n to factor J:**
 \[
 q_{x_n \rightarrow J}(x_n) = \prod_{J' \in \mathcal{M}(n) \setminus J} r_{J' \rightarrow x_n}(x_n)
 \]

- **Factor J to variable n:**
 \[
 r_{J \rightarrow x_n}(x_n) = \sum_{x_J \setminus n} \mathcal{f}_J(x_J) \prod_{n' \in \mathcal{N}(J) \setminus n} q_{x_{n'} \rightarrow J}(x_{n'})
 \]
 - $\mathcal{M}(n)$ are the factors in which x_n is included.
 - $\mathcal{N}(J)$ are the variable nodes for factor J.
 - x_J are the variables for factor J.

Pérez-Cruz
Message Passing Algorithms

▶ We do not need to sort the sums.
▶ We do not need to know the structure of the whole graph.
▶ We only need local information:
 • which variable is connected to which factor.
 • which factor is connected to which variable.
▶ For tree-like graphs the solution is exact and it finishes in a finite number of iterations.
▶ For general graphs this algorithm is not applicable.
▶ ... but it typically works well.
Low Density Parity Check Codes

- If we have few ones in the parity check matrix,
Low Density Parity Check Codes

- If we have few ones in the parity check matrix,
- ... we should expect few loops.
- Locally it will look like a tree
Low Density Parity Check Codes

- If we have few ones in the parity check matrix,
- ... we should expect few loops.
- Locally it will look like a tree
- ... and if we run the message passing algorithm for a finite iterations we will not get harmful feedback.
- And if the density is large enough it leads to ‘good codes’.
- 3 ones per column seems to work ... good enough.
Low density?
Low density?
Low density
Low density
Low density
How do we know LDPC codes are ‘good’?

- We select a simple channel model:
 - Binary Erasure Channel (BEC).
- We simplify the message passing algorithm:
 - Peeling Decoder.
- We analyze its behavior:
 - Density Evolution.
- We show it achieves channel capacity:
 - Optimized LDPC codes.
Binary Erasure Channel

\[\begin{align*}
0 & \quad 1 - \epsilon & \quad \epsilon & \quad \epsilon & \quad 0 \\
1 & \quad 1 - \epsilon & \quad \epsilon & \quad \epsilon & \quad 1
\end{align*} \]
Binary Erasure Channel

- BEC is a simple channel, because ...
Binary Erasure Channel

- BEC is a simple channel, because ...
 - we either have total knowledge of the transmitted bit.
 - or we are completely clueless.

- if $y_\ell = 0$ or $y_\ell = 1$:
 \[
 p(x_\ell = 0 | y_\ell = 0) = 1 \quad p(x_\ell = 1 | y_\ell = 0) = 0 \\
 p(x_\ell = 0 | y_\ell = 1) = 0 \quad p(x_\ell = 1 | y_\ell = 1) = 1
 \]

- if $y_\ell = ?$:
 \[
 p(x_\ell = 0 | y_\ell = ?) = 0.5 \quad p(x_\ell = 1 | y_\ell = ?) = 0.5
 \]
Message Passing over the BEC

- Initial Message:
 \[r_{x_2 \to A}(x_2) \propto p(x_2 | y_2) \]

- Message from factors to Variables:
 \[r_{A \to x_2}(x_2) = \sum_{x_1, x_3} f_A(x_1, x_2, x_3) q_{x_1 \to A}(x_1) q_{x_3 \to A}(x_3) \]

- What happens if either \(x_1 \) or \(x_2 \) are erased?

- What happens if neither are erased?

- After the first iteration:
 \[p(x_2 | y_2, y_1, y_2, y_5, y_6) \propto p(x_2 | y_2) r_{A \to x_2}(x_2) r_{B \to x_2}(x_2) \]
Message Passing over the BEC

► Initial Message:

\[r_{x_2 \rightarrow A}(x_2) \propto p(x_2|y_2) \]

► Message from factors to Variables:

\[r_{A \rightarrow x_2}(x_2) = \sum_{x_1, x_3} f_A(x_1, x_2, x_3) q_{x_1 \rightarrow A}(x_1) q_{x_3 \rightarrow A}(x_3) \]

► What happens if either \(x_1 \) or \(x_2 \) are erased?

► What happens if neither are erased?

► After the first iteration:

\[p(x_2|y_2, y_1, y_2, y_5, y_6) \propto p(x_2|y_2) r_{A \rightarrow x_2}(x_2) r_{B \rightarrow x_2}(x_2) \]

► What happens if one of them is not erased?
- **blue** is zero.
- **red** is one.
Example

You are red!!

You are equal

One or three of you are blue

You are equal

You are equal

You are equal
Example

You are red!!

You are equal

You are red!!

One or three of you are blue

You are equal

You are red!!

You are equal

You are equal

You are red!!

One or three of you are blue

You are equal

You are equal

You are red!!
Example

You are red!!
You are equal
One or three of you are blue
You are equal
You are equal

You are red!!
You are equal
One or three of you are blue
You are equal
You are equal

You are red!!
You are equal
One or three of you are blue
You are equal
You are equal

You are red!!
You are equal
One or three of you are blue
You are equal
You are equal

You are red!!
You are equal
One or three of you are blue
You are equal
You are equal

You are red!!
You are equal
One or three of you are blue
You are equal
You are equal
Example

You are red!!

You are ?

You are equal

You are equal

You are ?

One or three of you are blue

You are ?

You are red!!

You are ?

You are equal
Message Passing over the BEC

From this example we reduce the message passing algorithm to two simple rules:

- Variable is de-erase if it gets a single de-erasure message.
- Factor sends a de-erasure message if all the other variables are known.

The Peeling decoder:

1. Remove from the bipartite graph all known variables.
2. Search for factors with a single variable.
3. Remove those variables from the graph. Go to 2.
Example

You are red!!

You are equal

You are red!!

One or three of you are blue

You are equal

You are equal

One of you is blue

You are equal
Example

\[V_1 \]
\[V_2 \]
\[V_3 \]
\[V_4 \]
\[V_5 \]

You are blue

You are equal

\[V_1 \]
\[V_2 \]
\[V_3 \]
\[V_4 \]
\[V_5 \]

You are blue
Can the Peeling Decoder fail?

- When all the factors have two or more outputs.
- Can the solution still be unique?
- It dependens.
- It never makes a mistake, though
Analysis

- How good is our LDPC code?
- What error rate in the channel can be decoded?
- Is it equal to the channel capacity?
- Density Evolution answers these questions for LDPC code.
- Reminder: For the BEC $C = 1 - \epsilon$.
- We first analyze a regular LDPC code with 3 ones per column and rate 1/2.
Detangle
First Step

- If the erasure probability in the channel is ϵ, what is the probability that this variable is erased?
First Step

If the erasure probability in the channel is ϵ, what is the probability that this variable is erased?

$$R_0 = \epsilon$$
Second Step (a)

- If the erasure probability in the channel is ϵ, what is the probability that each factor sends an erased message?
If the erasure probability in the channel is ϵ, what is the probability that each factor sends an erased message?

It sends an erased message if any of the variables is erased:

$$L1 = 1 - (1 - \epsilon)^5$$
Second Step (b)

If the erasure probability in the channel is ϵ, what is the probability that the top variable is erased once it has received the messages from the factors?
Second Step (b)

- If the erasure probability in the channel is ϵ, what is the probability that the top variable is erased once it has received the messages from the factors?

- It is erased if any of the messages are erased:

$$R1 = \epsilon (L1)^3 = \epsilon (1 - (1 - \epsilon)^5)^3$$
General Step

▶ The variable in next layer variable is erased with probability:

\[R_{t+1} = \epsilon (1 - (1 - R_t)^5)^2 \]

▶ Why did I change the 3 for the 2?
General Step

- The variable in next layer variable is erased with probability:

\[R_{t+1}(\epsilon, R_t) = \epsilon (1 - (1 - R_t)^5)^2 \]

- In this recursion, we can expect two things to happen:
 - Either \(R_{t+1} \) is reduced in each iteration to zero.
 - Or for some \(t \): \(R_{t+1} = R_t \). The algorithm stops decoding.

- What is the maximum \(\epsilon \) for which the algorithm recovers the transmitted word?
Matlab Demo

\[\varepsilon = 0.4 \]

\[R_t \]
\[R_{t+1} \]

\[\text{Pérez-Cruz 61} \]
Irregular LDPC codes

▶ For the Regular LDPC codes maximum error 0.4294 with DP decoding.
▶ For the Regular LDPC codes maximum error 0.48815 with MAP decoding.
▶ Channel capacity 0.5.
▶ Can we get closer to capacity?
 ∗ Using Irregular LDPC codes.
Irregular LDPC codes
50% of the times we will have each variable.

For the first case:

\[R_{t+1} = \epsilon (1 - (1 - R_t)^5)^2 \]

For the second case:

\[R_{t+1} = \epsilon (1 - (1 - R_t)^5)^3 \]

For the general case:

\[R_{t+1}(\epsilon, R_t) = 0.5\epsilon(1 - (1 - R_t)^5)^2 + 0.5\epsilon(1 - (1 - R_t)^5)^3 \]

What is wrong with this interpretation?
Irregular LDPC codes

- This is not the case, because we have more links to variables with 4 connections.

- From the point of view of the variables:
 - 6 variables of degree 3 and 6 variables of degree 4.

- From the point of view of the links:
 - 18 links to var. of degree 3 and 24 links to var. of degree 4.
Irregular LDPC codes

- For point of view of the variables:

\[\Lambda(x) = \sum_i \Lambda_i x^i \]

- For point of view of the links to the variables:

\[\lambda(x) = \sum_i i \lambda_i x^{i-1} \]
Irregular LDPC codes

- For point of view of the variables:

\[\Lambda(x) = 6x^3 + 6x^4 \]

- For point of view of the links to the variables:

\[\lambda(x) = 18x^2 + 24x^3 \]
Irregular LDPC codes

For point of view of the variables:

\[L(x) = 0.5x^3 + 0.5x^4 \]

For point of view of the links to the variables:

\[\lambda(x) = 0.4286x^2 + 0.5714x^3 \]
Irregular LDPC codes

For the first case: \(R_{t+1} = \epsilon (1 - (1 - R_t)^5)^2 \)

For the second case: \(R_{t+1} = \epsilon (1 - (1 - R_t)^5)^3 \)

For the general case:

\[
R_{t+1}(\epsilon, R_t) = 0.4286\epsilon (1 - (1 - R_t)^5)^2 + 0.5714\epsilon (1 - (1 - R_t)^5)^3
\]
For the first case: \(R_{t+1} = \epsilon(1 - (1 - R_t)^5)^2 \)

For the second case: \(R_{t+1} = \epsilon(1 - (1 - R_t)^5)^3 \)

For the general case:

\[
R_{t+1}(\epsilon, R_t) = \lambda \left(\epsilon(1 - (1 - R_t)^5) \right)
\]
Irregular LDPC codes

42.86% 57.14%

For the first case: $R_{t+1} = \epsilon (1 - (1 - R_t)^5)^2$

For the second case: $R_{t+1} = \epsilon (1 - (1 - R_t)^5)^3$

For the general case:

$$R_{t+1}(\epsilon, R_t) = \lambda (\epsilon (1 - \rho(1 - R_t)))$$
Definitions

- Number of variables with i links:
 \[\Lambda(x) = \sum_{i=1}^{\ell_{\text{max}}} \Lambda_i x^i \]

- Number of checks with i links:
 \[P(x) = \sum_{i=1}^{r_{\text{max}}} P_i x^i \]

- Number of variables: $\Lambda(1) = n$.

- Number of checks: $P(1) = n(1 - r)$.

- Rate: $r = 1 - \frac{P(1)}{\Lambda(1)}$.

Pérez-Cruz 72
Definitions

▶ Fraction of variables with i links:

$$L(x) = \frac{\Lambda(x)}{\Lambda(1)} = \frac{1}{\Lambda(1)} \sum_{i=1}^{\ell_{\text{max}}} \Lambda_i x^i$$

▶ Fraction of checks with i links:

$$R(x) = \frac{P(x)}{P(1)} = \frac{1}{P(1)} \sum_{i=1}^{r_{\text{max}}} P_i x^i$$

▶ $L(1) = 1$.

▶ $R(1) = 1$.

▶ Rate: $r = 1 - \frac{L'(1)}{R'(1)}$.

Pérez-Cruz 73
Definitions

- Fraction of links connected to variables with i links:
 \[
 \lambda(x) = \frac{N'(x)}{N'(1)} = \frac{L'(x)}{L'(1)} = \sum_{i=1}^{\ell_{\text{max}}} \lambda_i x^{i-1}
 \]

- Fraction of links connected to checks with i links:
 \[
 \rho(x) = \frac{P'(x)}{P'(1)} = \frac{R'(x)}{R'(1)} = \sum_{i=1}^{r_{\text{max}}} \rho_i x^{i-1}
 \]

- $\ell_{\text{avg}} = \frac{1}{\int_0^1 \lambda(x) dx}$.

- $r_{\text{avg}} = \frac{1}{\int_0^1 \rho(x) dx}$.

- Rate: $r = 1 - \frac{\ell_{\text{avg}}}{r_{\text{avg}}} = 1 - \frac{\int_0^1 \rho(x)}{\int_0^1 \lambda(x)}$.
Sequence of Capacity Achieving Codes

- Multiplicative Gap to Capacity:

\[r(\lambda, \rho) = (1 - \delta)(1 - \epsilon_{BP}) \]

If delta were zero the BP decoder achieves capacity.

- It can be proven that

\[\delta(\lambda, \rho) \geq \frac{r^{r_{\text{avg}}-1}(1 - r)}{1 + r^{r_{\text{avg}}-1}(1 - r)} \]

- Meaning that the avarage right degree distribution needs to go to infinity for the codes to get to capacity.

- We can only expect to design a sequence of capacity achieving codes.
Sequence of Capacity Achieving Codes

- We say that the sequence \(\{\lambda^{(N)}, \rho^{(N)}\}_{N \geq 1} \) achieve capacity on the \(BEC(\epsilon) \) if:

 \[
 \lim_{N \to \infty} r(\lambda^{(N)}, \rho^{(N)}) = 1 - \epsilon
 \]

 \[
 \lim_{N \to \infty} \delta(\lambda^{(N)}, \rho^{(N)}) = 0
 \]

- Example for \(\alpha^{-1} \in \mathbb{N} \) and \(N \):

 \[
 \lambda^{(N)}_{\alpha}(x) = \frac{\hat{\lambda}^{(N)}_{\alpha}(x)}{\hat{\lambda}^{(N)}_{\alpha}(1)}
 \]

 \[
 \tilde{\lambda}^{(N)}_{\alpha}(x) = \sum_{i=1}^{N} \binom{\alpha}{i} (-1)^{i-1} x^i
 \]

 \[
 \rho_{\alpha}(x) = x^{1/\alpha}
 \]
Example of a Sequence of Capacity Achieving Codes

- We can obtain that:

\[
 r(\lambda, \rho) = \frac{\frac{N}{\alpha} \binom{\alpha}{N} (-1)^{N-1} \left(1 - \frac{1}{N}\right)}{1 - \frac{1}{N} \frac{N}{\alpha} \binom{\alpha}{N} (-1)^{N-1}}
\]

\[
 \delta(\lambda, \rho) \leq \frac{1 - \frac{N}{\alpha} \binom{\alpha}{N} (-1)^{N-1}}{N - \frac{N}{\alpha} \binom{\alpha}{N} (-1)^{N-1}}
\]

- if you set \(\frac{N}{\alpha} \binom{\alpha}{N} (-1)^{N-1} = 1 - \epsilon\), we can reach capacity as \(1/\alpha\) and \(N\) goes to infinity.
Optimization of Irregular LDPC codes

- **Sufficient Condition for obtaining the ML codeword:**
 \[
 \lambda (\epsilon (1 - \rho (1 - x))) - x \leq 0 \quad x \in [0, 1]
 \]

- If we fixed \(\rho(x) \), the previous equation is linear in \(\lambda_i \).

- For a fixed \(\rho(x) \), the rate is an increasing function of \(\sum_i \lambda_i / i \).

- **Optimization Procedure:**
 \[
 \max_{\lambda_i \geq 0} \left\{ \sum_i \frac{\lambda_i}{i} \left| \sum_{i=2}^{\ell_{\text{max}}} \lambda_i = 1; \lambda (\epsilon (1 - \rho (1 - x))) - x \leq 0, x \in [0, 1] \right. \right\}
 \]

- We can now fix \(\lambda(x) \) and optimize \(\rho(x) \) [Not necessary].
Optimization of Irregular LDPC codes

Optimization procedure:

- Fix r_{avg}:

$$\rho(x) = \frac{r(r + 1 - r_{\text{avg}})}{r_{\text{avg}}} x^{r-1} + \frac{r_{\text{avg}} - r(r + 1 - r_{\text{avg}})}{r_{\text{avg}}} x^r$$

- Select the objective rate r and ℓ_{max}.

- Run the optimization problem

Example: $r_{\text{avg}} = 6$, $\ell_{\text{max}} = 8$ and $r = 0.5$:

$$\lambda(x) = 0.409x + 0.202x^2 + 0.0768x^3 + 0.1971x^6 + 0.1151x^7$$

$$\rho(x) = x^5 \quad r = 0.5004$$
Why Machine Learning can help?

- The decoder of LDPC codes is based on BP.
- We have stronger Approximate Inference Algorithm.
- Expectation Propagation:

\[\hat{q}(x) = \arg \min D_{KL}(p(x|y) || q(x)) \]

- For \(q(x) = \prod_{\ell=1}^{n} q(x_i) \), we recover BP.
- For \(q(x) = \prod_{\ell=1}^{n} q(x_i|\pi x_i) \)
 - We impose a chain over the the variables.
 - We get a more accurate approximation.
EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q(V_3|V_2)$.
EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q(V_3|V_2)$.
- And F_2 tells V_1 that is blue.
- Why?
EP with a Tree-Structure

- For this set of variables the PD fails.
- Now we enforce $q(V_3|V_2)$.
- And F_2 tells V_1 that is blue.
- Now F_2 tells V_3 that is blue.
For this set of variables the PD fails.

Now we enforce $q(V_3|V_2)$.

And F_2 tells V_1 that is blue.

Now F_1 tells V_3 that is blue.

Now F_3 tells V_2 that is red.
TEP Algorithm

- **Initialization:** Remove all variables that have not been erased.
 - Change the parity of those that are equal to one.

- **Iteration:**
 - Look for a check node of degree 1: De-erase the associated variable.
 - Look for a Check node of degree 2: Substitute one variable by the other.
 - Repeat until decoding.
TEP Algorithm
Useful TEP Algorithm
\(\lambda = x^2 \) and \(\rho = x^5 \).

- \(n = 2^8 \) (○),
- \(n = 2^9 \) (□),
- \(n = 2^{10} \) (×) and,
- \(n = 2^{11} \) (▵).

![Graph showing word error rate versus channel erasure probability](image-url)
\[\lambda(x) = \frac{1}{6}x + \frac{5}{6}x^3 \text{ and} \]
\[\rho(x) = x^5. \]

\[n = 2^9 \quad (\square), \]
\[n = 2^{10} \quad (\times), \]
\[n = 2^{11} \quad (\triangle) \text{ and}, \]
\[n = 2^{12} \quad (\diamond). \]
These results can be extended to more realistic channels:

- BSC.
- AWGN.

Using ExIT charts.

Results only approximate.

Polar Codes.
Take Home Message

- There are problems in Information Theory that can be solved using Information Theory

- My view:
 - Non-asymptotic Information Theory.
 - Rate-Distortion.
 - Network Coding.
Thanks!