
HILBERT SPACE EMBEDDING FOR DIRICHLET

PROCESS MIXTURES

Krikamol Muandet

Department of Empirical Inference
Max Planck Institute for Intelligent Systems
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MOTIVATIONS

Bayesian nonparametrics
◮ Pros: Flexible, i.e., the complexity of the model is determined by

the data.
◮ Cons: Exact inference is often intractable.

◮ Markov chain Monte Carlo (Neal 2000).
◮ variational Bayes (Blei and Jordan 2005, Kurihara 2007).
◮ etc.

Kernel methods
◮ Pros: The problem usually results in the convex optimization.
◮ Cons: The algorithm suffers from model selection/comparison,

e.g., need cross validation to specify the right model complexity.
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MOTIVATIONS

Model prior → Bayes’ theorem → Inference

P(Y |X )︸ ︷︷ ︸
posterior

∝P(X |Y )︸ ︷︷ ︸
likelihood

P(Y )︸ ︷︷ ︸
prior
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BAYESIAN CLUSTERING PROBLEM

xi ∼
K∑

j=1

πiPj , i = 1, . . . ,n

Key question: what is the right number of clusters, i.e., K ?

4



DILICHLET PROCESS
(FERGUSON 1973)

Definition
A Dirichlet Process is a distribution of a random probability measure
G over a measurable space (Ω,B), such that for any finite partition
(A1, . . . ,Ar ) of Ω (i.e., Ω =

∐r
i=1 Ai , where

∐
means disjoint union

and Ai ∈ B), we have

(G(A1), . . . ,G(Ar )) ∼ Dir(αG0(A1), . . . , αG0(Ar ))

where G(Ai) =
∫

Ai
dG and G0(Ai) =

∫
Ai

dG0 for i = 1, . . . , r .
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DIRICHLET PROCESS MIXTURES

The DP mixture model can be summarized as follow:

P ∼ DP(G0, α), Θi ∼ P, xi |θi ∼ f (·|θi)

where θi is a latent variable that parametrizes the distribution of an
observed data points. For example,

xi |θi ∼ f (·|θi = {m,Σ}) = N (·|m,Σ)
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STICK-BREAKING CONSTRUCTION
(SETHURAMAN 1994)

βi ∼ Beta(1, α)

πi = βi

i−1∏

k=1

(1 − βk )

θi ∼ G0

G =

∞∑

i=1

πiδθi .
c

Theorem
The stick breaking construction gives the same probability measure
over all random measures on the measurable space (Ω,B) with the
Dirichlet Process with same parameter α and G0.
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HILBERT SPACE EMBEDDING FOR DPM

The Dirichlet Process Mixture Embedding (DPME) is defined as

Υ : Pα,Θ −→ Hk

Pπ,θ 7−→

∫
k(x , ·)dPπ,θ(x) ,

∞∑

i=1

πi

∫
k(x , ·)dfθi (x)

Pα,Θ a space of all Dirichlet Process mixture model.
Hk a reproducing kernel Hilbert space (RKHS) with reproduc-

ing kernel k .
Pπ,θ a Dirichlet Process mixture model

∑
∞

i=1 πi fθi (x).
fθi a density function such that fθi (·) ≥ 0 and

∫
dfθi = 1.
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HILBERT SPACE EMBEDDING FOR DPM

◮ Ishwaran and James (2001) made an important observation that
a truncation of the stick-breaking representation at a sufficiently
large T already provides an excellent approximation to the full
DPMM model.

◮ As a result, we propose the truncated Dirichlet Process Mixture
Embedding (tDPME):

Υ : Pα,Θ,T −→ Hk

Pπ,θ,T 7−→

∫
k(x , ·)dPπ,θ,T (x) ,

T∑

i=1

πi

∫
k(x , ·)dfθi (x)
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ALMOST-SURE TRUNCATION

Theorem
Let H be a reproducing kernel Hilbert space (RKHS) with a
reproducing kernel k. Assume that ‖k(x , ·)‖2

H
≤ R for all x. The

following inequality holds:

∥∥Υ[Pπ,θ]−Υ[Pπ,θ,T ]
∥∥2
H
≤ R · exp (−T/α)

where C is an arbitrary constant.

Proof.

‖Υ[Pπ,θ]−Υ[Pπ,θ,T ]‖
2
H =

∥∥∥∥∥∥

∞∑

i=T+1

πi

∫
k(x , ·)dfθi (x)

∥∥∥∥∥∥

2

H

= R

(
1 −

T∑

i=1

πi

)
≈ R · exp

(
−

T
α

)
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ALMOST-SURE TRUNCATION

◮ With sufficiently large truncation level T , the error is small.
◮ The truncated DPME can be used as a surrogate to the true

DPME.
◮ The bound also suggests how to choose the truncation level T .

That is, for an error to be smaller than δ, one must have

T > −α log
(
δ

R

)

11



OPTIMIZATION
(SONG ET AL. 2008)

Given a truncated DPME Υ[Pπ,θ,T ] and observation x1, x2, . . . , xn, we
learn π and θ by solving the following optimization problem:

min
π,θ

‖µ̂X −Υ[Pπ,θ,T ]‖
2
H subject to π

⊤1 = 1, πi ≥ 0

To prevent overfitting, we introduce a regularizer Ω(π) = 1
2‖π‖

2 with
a regularization constant ε > 0. Substituting µ̂X and Υ[Pπ,θ,T ] back
yields a quadratic programming (QP) for π:

min
π

1
2
π
⊤(S + εI)π − R⊤

π subject to π
⊤1 = 1, πi ≥ 0

where Sij = 〈µ[fθi ], µ[fθj ]〉H and Rj = 〈µ̂X , µ[fθj ]〉H.
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OPTIMIZATION
(SONG ET AL. 2008)

1. Set α, δ and estimate T .
2. Do until convergence

2.1 Optimize the mixing proportion π via quadratic programming
(QP).

2.2 Optimize the parameters θ via constraint optimization.

3. Cluster the data points according to the resulting mixture model.
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Demo
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CONCLUSIONS & DISCUSSIONS

Conclusion
◮ the conjunction between Bayesian nonparametrics and kernel

methods.
◮ the Hilbert space embedding of the Dirichlet Process mixtures.

Open questions
◮ How to avoid truncation?
◮ Is the solution of DPME related to ML/MAP solutions?
◮ How to choose the kernel k?
◮ Kernel methods and random measures.
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