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MOTIVATIONS

Bayesian nonparametrics
» Pros: Flexible, i.e., the complexity of the model is determined by
the data.
» Cons: Exact inference is often intractable.

» Markov chain Monte Carlo (Neal 2000).
» variational Bayes (Blei and Jordan 2005, Kurihara 2007).
> etc.

Kernel methods
» Pros: The problem usually results in the convex optimization.

» Cons: The algorithm suffers from model selection/comparison,
e.g., need cross validation to specify the right model complexity.



MOTIVATIONS

| Model prior | — | Bayes’ theorem | — | Inference

PY[X)<P(X[Y)P(Y)
posterior likellhood prior



BAYESIAN CLUSTERING PROBLEM

K
Xj NZTFin, i=1,...,n
j=1

Key question: what is the right number of clusters, i.e., K?



DILICHLET PROCESS
(FERGUSON 1973)

Definition

A Dirichlet Process is a distribution of a random probability measure
G over a measurable space (€2, B), such that for any finite partition
(A1,...,Ar) of Q (i.e., Q =[[_; Ai, where ]| means disjoint union
and A; € B), we have

(G(A1),....G(Ar)) ~ Dir(aGo(Ay1), .. ., aGo(Ar))

where G(A;) = fAi dG and Go(A)) = fAi dGgfori=1,...,r.



DIRICHLET PROCESS MIXTURES

The DP mixture model can be summarized as follow:
P ~ DP(Gop,a), ©; ~ P, x6; ~f(-6)

where 6; is a latent variable that parametrizes the distribution of an
observed data points. For example,

X0 ~f(-[0; = {m,X}) = N(-Im, )



STICK-BREAKING CONSTRUCTION

(SETHURAMAN 1994)

Bi ~ Beta(1, «) '

= allPa)

i—1 T
m = /Bi H(]_ — /Bk) "  Betadisritution . M_
k=1 : secoed]
6 ~ Go "
o0
G = Z midg, -
i=1
Theorem

The stick breaking construction gives the same probability measure
over all random measures on the measurable space (2, B) with the
Dirichlet Process with same parameter o and Gg.



HILBERT SPACE EMBEDDING FOR DPM

The Dirichlet Process Mixture Embedding (DPME) is defined as

T ma@—>Hk
Pﬂgu—>/kx ) dB (x Zm/kx ) dfy (x

PBa,o aspace of all Dirichlet Process mixture model.

Hy a reproducing kernel Hilbert space (RKHS) with reproduc-
ing kernel k.

Pre aDirichlet Process mixture model Y2, mifg, (x).

a density function such that fy, (-) > 0 and | dfyg, = 1.



HILBERT SPACE EMBEDDING FOR DPM

» Ishwaran and James (2001) made an important observation that
a truncation of the stick-breaking representation at a sufficiently
large T already provides an excellent approximation to the full
DPMM model.

» As aresult, we propose the truncated Dirichlet Process Mixture
Embedding (tDPME):

T : Pao1r — Hi
.

Pr g1 — /k(x,-)dpﬂw(x) 2 Zm/k(x,-)dfgi (x)

i=1



ALMOST-SURE TRUNCATION

Theorem

Let H be a reproducing kernel Hilbert space (RKHS) with a
reproducing kernel k. Assume that [|k(x, -)[|3, < R for all x. The
following inequality holds:

| T[Pr0l = T[Prorll3 < R - exp (=T /)
where C is an arbitrary constant.
Proof. 2

I Pro] - TProrllZ = || 3 / K(x, )dfy (x)

i=T+1

H

r (1) e ()
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ALMOST-SURE TRUNCATION

» With sufficiently large truncation level T, the error is small.

» The truncated DPME can be used as a surrogate to the true
DPME.

» The bound also suggests how to choose the truncation level T .
That is, for an error to be smaller than 6, one must have

T > —alog (%)
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OPTIMIZATION
(SONG ET AL. 2008)

Given a truncated DPME T[P, ¢ t] and observation X1, Xz, ..., X,, we
learn 7 and 0 by solving the following optimization problem:

min |[7ix — T[Pro7]l3 subjecttor’'l=17 >0
™,
To prevent overfitting, we introduce a regularizer Q() = 4||||? with

a regularization constant ¢ > 0. Substituting ix and T[P ¢ 1] back
yields a quadratic programming (QP) for 7:

1 .
min ETFT(S +er —R'w  subjecttor'1=1,7 >0

where S = (ulfy ], ulfg])n and Ry = (iix, plfg])a
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OPTIMIZATION
(SONG ET AL. 2008)

1. Set a, § and estimate T.
2. Do until convergence

2.1 Optimize the mixing proportion 7 via quadratic programming

(QP).
2.2 Optimize the parameters 6 via constraint optimization.

3. Cluster the data points according to the resulting mixture model.
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Demo



CONCLUSIONS & DISCUSSIONS

Conclusion

» the conjunction between Bayesian nonparametrics and kernel
methods.

» the Hilbert space embedding of the Dirichlet Process mixtures.
Open questions
» How to avoid truncation?
Is the solution of DPME related to ML/MAP solutions?
How to choose the kernel k?

v

v

Kernel methods and random measures.

v
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