Efficient algorithms for estimating multi-view mixture models

Daniel Hsu

Microsoft Research, New England
Outline

Multi-view mixture models

Multi-view method-of-moments

Some applications and open questions

Concluding remarks
Part 1. Multi-view mixture models

Multi-view mixture models
Unsupervised learning and mixture models
Multi-view mixture models
Complexity barriers

Multi-view method-of-moments

Some applications and open questions

Concluding remarks
Unsupervised learning

- Many modern applications of machine learning:
 - high-dimensional data from many diverse sources,
 - but mostly unlabeled.
Unsupervised learning

- Many modern applications of machine learning:
 - high-dimensional data from many diverse sources,
 - but mostly unlabeled.

- Unsupervised learning: extract useful info from this data.
 - Disentangle sub-populations in data source.
 - Discover useful representations for downstream stages of learning pipeline (e.g., supervised learning).
Mixture models

Simple latent variable model: mixture model

\[h \in [k] := \{1, 2, \ldots, k\} \text{ (hidden);} \]
\[\vec{x} \in \mathbb{R}^d \text{ (observed);} \]
\[\Pr[h = j] = w_j; \quad \vec{x} \mid h \sim \mathbb{P}_h; \]

so \(\vec{x} \) has a mixture distribution

\[\mathbb{P}(\vec{x}) = w_1 \mathbb{P}_1(\vec{x}) + w_2 \mathbb{P}_2(\vec{x}) + \cdots + w_k \mathbb{P}_k(\vec{x}). \]
Mixture models

Simple latent variable model: mixture model

\[h \in [k] := \{1, 2, \ldots, k\} \text{ (hidden)}; \]
\[\vec{x} \in \mathbb{R}^d \text{ (observed)}; \]
\[\Pr[h = j] = w_j; \quad \vec{x} \mid h \sim \mathbb{P}_h; \]

so \(\vec{x} \) has a mixture distribution

\[\mathbb{P}(\vec{x}) = w_1 \mathbb{P}_1(\vec{x}) + w_2 \mathbb{P}_2(\vec{x}) + \cdots + w_k \mathbb{P}_k(\vec{x}). \]

Typical use: learn about constituent sub-populations (e.g., clusters) in data source.
Multi-view mixture models

Can we take advantage of diverse sources of information?
Multi-view mixture models

Can we take advantage of diverse sources of information?

$h \in [k], \quad \vec{x}_i \in \mathbb{R}^{d_i}, \quad \ell = \# \text{ views} (e.g., \text{audio, video, text}).$

$k = \# \text{ components}, \quad \ell = \# \text{ views}.$

View 1: $\vec{x}_1 \in \mathbb{R}^{d_1}$
View 2: $\vec{x}_2 \in \mathbb{R}^{d_2}$
View 3: $\vec{x}_3 \in \mathbb{R}^{d_3}$
Can we take advantage of diverse sources of information?

Can we take advantage of diverse sources of information?

$\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_\ell

h \in [k],

\vec{x}_1 \in \mathbb{R}^{d_1}, \vec{x}_2 \in \mathbb{R}^{d_2}, \ldots, \vec{x}_\ell \in \mathbb{R}^{d_\ell}.

k = \# \text{ components}, \ \ell = \# \text{ views (e.g., audio, video, text)}.$
Multi-view mixture models

Multi-view assumption:
Views are conditionally independent given the component.

View 1: $\tilde{x}_1 \in \mathbb{R}^{d_1}$
View 2: $\tilde{x}_2 \in \mathbb{R}^{d_2}$
View 3: $\tilde{x}_3 \in \mathbb{R}^{d_3}$

Larger k (# components): more sub-populations to disentangle.
Larger ℓ (# views): more non-redundant sources of information.
Semi-parametric estimation task

“Parameters” of component distributions:

Mixing weights $w_j := \Pr[h = j], \quad j \in [k];$

Conditional means $\mu_{v, j} := \mathbb{E}[\tilde{x}_v | h = j] \in \mathbb{R}^{d_v}, \quad j \in [k], \; v \in [\ell].$

Goal: Estimate mixing weights and conditional means from independent copies of $(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_\ell).$
Semi-parametric estimation task

“Parameters” of component distributions:

Mixing weights $w_j := \Pr[h = j], \quad j \in [k];$
Conditional means $\bar{\mu}_{v,j} := \mathbb{E}[\bar{x}_v | h = j] \in \mathbb{R}^{dv}, \quad j \in [k], v \in [\ell].$

Goal: Estimate mixing weights and conditional means from independent copies of $(\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_\ell).$

Questions:

1. How do we estimate $\{w_j\}$ and $\{\bar{\mu}_{v,j}\}$ without observing h?
2. How many views ℓ are sufficient to learn with poly(k) computational / sample complexity?
Some barriers to efficient estimation

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.
Some barriers to efficient estimation

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Cryptographic barrier: discrete HMM parameter estimation as hard as *learning parity functions with noise* (Mossel-Roch, ’06).
Some barriers to efficient estimation

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Cryptographic barrier: discrete HMM parameter estimation as hard as learning parity functions with noise (Mossel-Roch, ’06).

Statistical barrier: Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even if components are well-separated (Moitra-Valiant, ’10).
Some barriers to efficient estimation

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Cryptographic barrier: discrete HMM parameter estimation as hard as learning parity functions with noise (Mossel-Roch, ’06).

Statistical barrier: Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even if components are well-separated (Moitra-Valiant, ’10).

In practice: resort to local search (e.g., EM), often subject to slow convergence and inaccurate local optima.
Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume some **large minimum separation** between component means (Dasgupta, ’99):

\[
\text{sep} := \min_{i \neq j} \frac{\|\mu_i - \mu_j\|}{\max\{\sigma_i, \sigma_j\}}.
\]

▶ \(\text{sep} = \Omega(d_c):\) interpoint distance-based methods / EM (Dasgupta, ’99; Dasgupta-Schulman, ’00; Arora-Kannan, ’00)

▶ \(\text{sep} = \Omega(k_c):\) first use PCA to \(k\) dimensions (Vempala-Wang, ’02; Kannan-Salmasian-Vempala, ’05; Achlioptas-McSherry, ’05)

Also works for mixtures of log-concave distributions.

▶ No minimum separation requirement: method-of-moments but \(\exp(\Omega(k))\) running time / sample size (Kalai-Moitra-Valiant, ’10; Belkin-Sinha, ’10; Moitra-Valiant, ’10)
Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume some large minimum separation between component means (Dasgupta, ’99):

\[\text{sep} := \min_{i \neq j} \frac{\| \vec{\mu}_i - \vec{\mu}_j \|}{\max\{\sigma_i, \sigma_j\}}. \]

- \(\text{sep} = \Omega(d^c) \): interpoint distance-based methods / EM (Dasgupta, ’99; Dasgupta-Schulman, ’00; Arora-Kannan, ’00)
 - \(\text{sep} = \Omega(k^c) \): first use PCA to \(k \) dimensions (Vempala-Wang, ’02; Kannan-Salmasian-Vempala, ’05; Achlioptas-McSherry, ’05)
 - Also works for mixtures of log-concave distributions.
Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume some **large minimum separation** between component means (Dasgupta, ’99):

\[
\text{sep} := \min_{i \neq j} \frac{\|\bar{\mu}_i - \bar{\mu}_j\|}{\max\{\sigma_i, \sigma_j\}}.
\]

- **sep = \Omega(d^c)**: interpoint distance-based methods / EM (Dasgupta, ’99; Dasgupta-Schulman, ’00; Arora-Kannan, ’00)
 - **sep = \Omega(k^c)**: first use PCA to \(k\) dimensions (Vempala-Wang, ’02; Kannan-Salmasian-Vempala, ’05; Achlioptas-McSherry, ’05)
 - Also works for mixtures of log-concave distributions.
- **No minimum separation requirement**: method-of-moments but \(\exp(\Omega(k))\) running time / sample size (Kalai-Moitra-Valiant, ’10; Belkin-Sinha, ’10; Moitra-Valiant, ’10)
Making progress: discrete hidden Markov models

Hardness reductions create HMMs with degenerate output and next-state distributions.

\[
\Pr[\bar{x}_t = \cdot | h_t = 1]
\]

\[
0.6 \Pr[\bar{x}_t = \cdot | h_t = 2] + 0.4 \Pr[\bar{x}_t = \cdot | h_t = 3]
\]
Making progress: discrete hidden Markov models

Hardness reductions create HMMs with degenerate output and next-state distributions.

\[
\Pr[\bar{x}_t = \cdot | h_t = 1]
\approx 0.6 + 0.4
\]

These instances are avoided by assuming parameter matrices are full-rank (Mossel-Roch, ’06; Hsu-Kakade-Zhang, ’09)
What we do

This work: given ≥ 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.
What we do

This work: given ≥ 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

- **Non-degeneracy condition** for multi-view mixture model: Conditional means $\{\vec{\mu}_{v,1}, \vec{\mu}_{v,2}, \ldots, \vec{\mu}_{v,k}\}$ are linearly independent for each view $v \in [\ell]$, and $\vec{w} > \vec{0}$.

 Requires high-dimensional observations ($d_v \geq k$)!
This work: given ≥ 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

- **Non-degeneracy condition** for multi-view mixture model: Conditional means $\{\vec{\mu}_v, 1, \vec{\mu}_v, 2, \ldots, \vec{\mu}_v, k\}$ are linearly independent for each view $v \in [\ell]$, and $\vec{w} > \vec{0}$.

 Requires high-dimensional observations ($d_v \geq k$)!

- **New efficient learning guarantees** for parametric models (e.g., mixtures of Gaussians, general HMMs)
This work: given ≥ 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

- **Non-degeneracy condition** for multi-view mixture model: Conditional means $\{\vec{\mu}_v, 1, \vec{\mu}_v, 2, \ldots, \vec{\mu}_v, k\}$ are linearly independent for each view $v \in [\ell]$, and $\vec{w} > \vec{0}$.

 Requires high-dimensional observations ($d_v \geq k$)!

- **New efficient learning guarantees** for parametric models (e.g., mixtures of Gaussians, general HMMs)

- **General tensor decomposition framework** applicable to a wide variety of estimation problems.

Multi-view mixture models

Multi-view method-of-moments
 Overview
 Structure of moments
 Uniqueness of decomposition
 Computing the decomposition
 Asymmetric views

Some applications and open questions

Concluding remarks
The plan

- First, assume views are \textit{(conditionally) exchangeable}, and derive basic algorithm.
The plan

- First, assume views are \textit{(conditionally) exchangeable}, and derive basic algorithm.

- Then, provide \textit{reduction} from general multi-view setting to exchangeable case.
Simpler case: exchangeable views

(Conditionally) exchangeable views: assume the views have the same conditional means, *i.e.*,

\[
\mathbb{E}[\mathbf{x}_v | h = j] \equiv \bar{\mu}_j, \quad j \in [k], v \in [\ell].
\]
Simpler case: exchangeable views

(Conditionally) exchangeable views: assume the views have the same conditional means, i.e.,

$$\mathbb{E}[\tilde{x}_v|h = j] \equiv \mu_j, \quad j \in [k], v \in [\ell].$$

Motivating setting: bag-of-words model, \(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_\ell \equiv \ell\) exchangeable words in a document.

One-hot encoding:
\(\tilde{x}_v = \tilde{e}_i \iff v\)-th word in document is \(i\)-th word in vocab

(where \(\tilde{e}_i \in \{0, 1\}^d\) has 1 in \(i\)-th position, 0 elsewhere).

\((\mu_j)_i = \mathbb{E}[(\tilde{x}_v)_i|h = j] = \Pr[\tilde{x}_v = \tilde{e}_i|h = j], \quad i \in [d], j \in [k].\)
Key ideas

1. **Method-of-moments**: conditional means are revealed by appropriate low-rank decompositions of moment matrices and tensors.

2. **Third-order tensor decomposition** is uniquely determined by directions of (locally) maximum skew.

3. The required **local optimization** can be efficiently performed in poly time.
Algebraic structure in moments

Recall: \(\mathbb{E}[\tilde{x}_v | h = j] = \tilde{\mu}_j \).
Algebraic structure in moments

Recall:
\[\mathbb{E}[\vec{x}_v | h = j] = \vec{\mu}_j. \]

By conditional independence and exchangeability of \(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_\ell \) given \(h \),

Pairs \(:= \mathbb{E}[\vec{x}_1 \otimes \vec{x}_2] \)

\[= \mathbb{E}\left[\mathbb{E}[\vec{x}_1 | h] \otimes \mathbb{E}[\vec{x}_2 | h]\right] = \mathbb{E}[\vec{\mu}_h \otimes \vec{\mu}_h] \]

\[= \sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \in \mathbb{R}^{d \times d}. \]
Algebraic structure in moments

Recall: \(E[\tilde{x}_v | h = j] = \tilde{\mu}_j \).

By conditional independence and exchangeability of \(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_\ell \) given \(h \),

Pairs := \(E[\tilde{x}_1 \otimes \tilde{x}_2] \)
\[= \mathbb{E}[E[\tilde{x}_1 | h] \otimes E[\tilde{x}_2 | h]] = \mathbb{E}[\tilde{\mu}_h \otimes \tilde{\mu}_h] \]
\[= \sum_{i=1}^{k} w_i \tilde{\mu}_i \otimes \tilde{\mu}_i \in \mathbb{R}^{d \times d}. \]

Triples := \(E[\tilde{x}_1 \otimes \tilde{x}_2 \otimes \tilde{x}_3] \)
\[= \sum_{i=1}^{k} w_i \tilde{\mu}_i \otimes \tilde{\mu}_i \otimes \tilde{\mu}_i \in \mathbb{R}^{d \times d \times d}, \text{ etc.} \]

(If only we could extract these “low-rank” decompositions . . .)
2nd moment: subspace spanned by conditional means

Non-degeneracy assumption (\{\vec{\mu}_i\}_{i=1} linearly independent) \Rightarrow Pairs = \sum_{i=1}^k w_i \vec{\mu}_i \otimes \vec{\mu}_i symmetric psd and rank k \Rightarrow Pairs equips k-dim subspace span \{\vec{\mu}_1, \vec{\mu}_2, ..., \vec{\mu}_k\} with inner product Pairs(\vec{x}, \vec{y}) := \vec{x}^\top Pairs \vec{y}.

However, \{\vec{\mu}_i\}_{i} not generally determined by just Pairs (e.g., \{\vec{\mu}_i\}_{i} are not necessarily orthogonal). Must look at higher-order moments?
2nd moment: subspace spanned by conditional means

Non-degeneracy assumption \(\{ \bar{\mu}_i \} \) linearly independent

\[
\begin{align*}
\text{Pairs} = \sum_{i=1}^{k} w_i \bar{\mu}_i \otimes \bar{\mu}_i \\
\text{symmetric psd and rank } k = \Rightarrow \text{Pairs equips } k \text{-dim subspace span } \{ \bar{\mu}_1, \bar{\mu}_2, \ldots, \bar{\mu}_k \} \\
\text{with inner product } \text{Pairs}(\bar{x}, \bar{y}) := \bar{x}^\top \text{Pairs} \bar{y}.
\end{align*}
\]

However, \(\{ \bar{\mu}_i \} \) not generally determined by just \(\text{Pairs}(e.g., \{ \bar{\mu}_i \} \text{are not necessarily orthogonal}) \). Must look at higher-order moments?
2nd moment: subspace spanned by conditional means

Non-degeneracy assumption ($\{\bar{\mu}_i\}$ linearly independent)

\implies Pairs $= \sum_{i=1}^{k} w_i \bar{\mu}_i \otimes \bar{\mu}_i$ symmetric psd and rank k
Non-degeneracy assumption \(\{\vec{\mu}_i\} \) linearly independent

\[\implies \text{Pairs} = \sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \quad \text{symmetric psd and rank } k \]

\[\implies \text{Pairs} \text{ equips } k\text{-dim subspace span}\{\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k\} \text{ with inner product} \]

\[\text{Pairs}(\vec{x}, \vec{y}) := \vec{x}^\top \text{Pairs} \vec{y}. \]
2nd moment: subspace spanned by conditional means

Non-degeneracy assumption \(\{\vec{\mu}_i\} \) linearly independent

\[
\implies \text{Pairs} = \sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \quad \text{symmetric psd and rank } k
\]

\[
\implies \text{Pairs} \text{ equips } k\text{-dim subspace span}\{\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k\} \text{ with inner product}
\]

\[
\text{Pairs}(\vec{x}, \vec{y}) := \vec{x}^\top \text{Pairs} \vec{y}.
\]

However, \(\{\vec{\mu}_i\} \) not generally determined by just **Pairs**
(e.g., \(\{\vec{\mu}_i\} \) are not necessarily orthogonal).
2nd moment: subspace spanned by conditional means

Non-degeneracy assumption ($\{\vec{\mu}_i\}$ linearly independent)

\Longrightarrow Pairs $= \sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i$ symmetric psd and rank k

\Longrightarrow Pairs equips k-dim subspace span$\{\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k\}$ with inner product

$$
\text{Pairs}(\vec{x}, \vec{y}) := \vec{x}^\top \text{Pairs} \vec{y}.
$$

However, $\{\vec{\mu}_i\}$ not generally determined by just Pairs (e.g., $\{\vec{\mu}_i\}$ are not necessarily orthogonal).

Must look at higher-order moments?
Claim: **Up to third-moment (i.e., 3 views) suffices.**

View **Triples**: $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ as trilinear form.
Claim: **Up to third-moment (i.e., 3 views) suffices.**

View **Triples**: $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ as trilinear form.

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each isolated local maximizer $\vec{\eta}^*$ of</td>
</tr>
<tr>
<td>$\max_{\vec{\eta} \in \mathbb{R}^d} \text{Triples}(\vec{\eta}, \vec{\eta}, \vec{\eta})$ s.t. $\text{Pairs}(\vec{\eta}, \vec{\eta}) = 1$</td>
</tr>
<tr>
<td>satisfies, for some $i \in [k]$,</td>
</tr>
<tr>
<td>$\text{Pairs}(\vec{\eta}^) = \sqrt{w_i} \bar{\mu}_i$, $\text{Triples}(\vec{\eta}^, \vec{\eta}^, \vec{\eta}^) = \frac{1}{\sqrt{w_i}}$.</td>
</tr>
</tbody>
</table>
3rd moment: (cross) skew maximizers

Claim: **Up to third-moment (i.e., 3 views) suffices.**
View **Triples**: $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as trilinear form.

Theorem
Each isolated local maximizer $\vec{\eta}^$ of*

$$\max_{\vec{\eta} \in \mathbb{R}^d} \text{Triples}(\vec{\eta}, \vec{\eta}, \vec{\eta}) \text{ s.t. } \text{Pairs}(\vec{\eta}, \vec{\eta}) = 1$$

satisfies, for some $i \in [k]$,

$$\text{Pairs} \, \vec{\eta}^* = \sqrt{w_i} \, \mu_i, \quad \text{Triples}(\vec{\eta}^*, \vec{\eta}^*, \vec{\eta}^*) = \frac{1}{\sqrt{w_i}}.$$

Also: these maximizers can be found **efficiently** and **robustly**.
Variational analysis

\[
\max_{\tilde{\eta} \in \mathbb{R}^d} \text{Tripples}(\tilde{\eta}, \tilde{\eta}, \tilde{\eta}) \quad \text{s.t.} \quad \text{Pairs}(\tilde{\eta}, \tilde{\eta}) = 1
\]
Variational analysis

\[
\max_{\tilde{\eta} \in \mathbb{R}^d} \text{Triples}(\tilde{\eta}, \tilde{\eta}, \tilde{\eta}) \quad \text{s.t.} \quad \text{Pairs}(\tilde{\eta}, \tilde{\eta}) = 1
\]

(Substitute \(\text{Pairs} = \sum_{i=1}^{k} w_i \tilde{\mu}_i \otimes \tilde{\mu}_i \) and \(\text{Triples} = \sum_{i=1}^{k} w_i \tilde{\mu}_i \otimes \tilde{\mu}_i \otimes \tilde{\mu}_i \))
Variational analysis

\[
\max_{\vec{\eta} \in \mathbb{R}^d} \sum_{i=1}^{k} w_i (\vec{\eta}^\top \vec{\mu}_i)^3 \quad \text{s.t.} \quad \sum_{i=1}^{k} w_i (\vec{\eta}^\top \vec{\mu}_i)^2 = 1
\]

(Substitute Pairs = \(\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i\) and Triples = \(\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \otimes \vec{\mu}_i\).)
Variational analysis

\[
\max_{\vec{\eta} \in \mathbb{R}^d} \sum_{i=1}^k w_i (\vec{\eta}^\top \vec{\mu}_i)^3 \quad \text{s.t.} \quad \sum_{i=1}^k w_i (\vec{\eta}^\top \vec{\mu}_i)^2 = 1
\]

(Let \(\theta_i := \sqrt{w_i (\vec{\eta}^\top \vec{\mu}_i)}\) for \(i \in [k]\).)
Variational analysis

\[
\max_{\tilde{\eta} \in \mathbb{R}^d} \sum_{i=1}^{k} \frac{1}{\sqrt{w_i}} (\sqrt{w_i} \tilde{\eta}^\top \tilde{\mu}_i)^3 \quad \text{s.t.} \quad \sum_{i=1}^{k} (\sqrt{w_i} \tilde{\eta}^\top \tilde{\mu}_i)^2 = 1
\]

(Let \(\theta_i := \sqrt{w_i} (\tilde{\eta}^\top \tilde{\mu}_i) \) for \(i \in [k] \).)
Variational analysis

\[
\max_{\tilde{\theta} \in \mathbb{R}^k} \sum_{i=1}^{k} \frac{1}{\sqrt{w_i}} \theta_i^3 \quad \text{s.t.} \quad \sum_{i=1}^{k} \theta_i^2 = 1
\]

(Let \(\theta_i := \sqrt{w_i} (\eta_i^\top \bar{\mu}_i) \) for \(i \in [k] \).)
Variational analysis

\[
\max_{\vec{\theta} \in \mathbb{R}^k} \sum_{i=1}^{k} \frac{1}{\sqrt{w_i}} \theta_i^3 \quad \text{s.t.} \quad \sum_{i=1}^{k} \theta_i^2 = 1
\]

(Let \(\theta_i := \sqrt{w_i} (\vec{\eta}^* \vec{\mu}_i) \) for \(i \in [k] \).)

Isolated local maximizers \(\vec{\theta}^* \) (found via gradient ascent) are

\(\vec{e}_1 = (1, 0, 0, \ldots) \), \(\vec{e}_2 = (0, 1, 0, \ldots) \), etc.

which means that each \(\vec{\eta}^* \) satisfies, for some \(i \in [k] \),

\[
\sqrt{w_j} (\vec{\eta}^* \vec{\mu}_j) = \begin{cases}
1 & j = i \\
0 & j \neq i.
\end{cases}
\]
Variational analysis

\[
\max_{\vec{\theta} \in \mathbb{R}^k} \sum_{i=1}^{k} \frac{1}{\sqrt{w_i}} \theta_i^3 \quad \text{s.t.} \quad \sum_{i=1}^{k} \theta_i^2 = 1
\]

(Let \(\theta_i := \sqrt{w_i} (\vec{\eta}^\top \vec{\mu}_i) \) for \(i \in [k] \).)

Isolated local maximizers \(\vec{\theta}^* \) (found via gradient ascent) are

\[
\vec{e}_1 = (1, 0, 0, \ldots), \quad \vec{e}_2 = (0, 1, 0, \ldots), \quad \text{etc.}
\]

which means that each \(\vec{\eta}^* \) satisfies, for some \(i \in [k] \),

\[
\sqrt{w_j} (\vec{\eta}^* \top \vec{\mu}_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i. \end{cases}
\]

Therefore

\[
\text{Pairs } \vec{\eta}^* = \sum_{j=1}^{k} w_j \vec{\mu}_j (\vec{\eta}^* \top \vec{\mu}_j) = \sqrt{w_i} \vec{\mu}_i.
\]
Extracting all isolated local maximizers

1. Start with $T := \text{Triples}$.

Goto step 2.

A variant of this runs in polynomial time (w.h.p.), and is robust to perturbations to Pairs and Triples.
1. Start with $T := \text{Triples}$.

2. Find isolated local maximizer of

$$T(\vec{\eta}, \vec{\eta}, \vec{\eta}) \text{ s.t. } \text{Pairs}(\vec{\eta}, \vec{\eta}) = 1$$

via gradient ascent from random $\vec{\eta} \in \text{range} \text{(Pairs)}$.

Say maximum is λ^* and maximizer is $\vec{\eta}^*$.
Extracting all isolated local maximizers

1. Start with $T := \text{Triples}$.

2. Find isolated local maximizer of

$$T(\vec{\eta}, \vec{\eta}, \vec{\eta}) \text{ s.t. } \text{Pairs}(\vec{\eta}, \vec{\eta}) = 1$$

via gradient ascent from random $\vec{\eta} \in \text{range(Pairs)}$.

Say maximum is λ^* and maximizer is $\vec{\eta}^*$.

3. Deflation: replace T with $T - \lambda^* \vec{\eta}^* \otimes \vec{\eta}^* \otimes \vec{\eta}^*$.

Goto step 2.
Extracting all isolated local maximizers

1. Start with $T := \text{Triples}$.
2. Find isolated local maximizer of

 $$T(\vec{\eta}, \vec{\eta}, \vec{\eta}) \text{ s.t. } \text{Pairs}(\vec{\eta}, \vec{\eta}) = 1$$

 via gradient ascent from random $\vec{\eta} \in \text{range}(\text{Pairs})$.
 Say maximum is λ^* and maximizer is $\vec{\eta}^*$.
3. Deflation: replace T with $T - \lambda^* \vec{\eta}^* \otimes \vec{\eta}^* \otimes \vec{\eta}^*$.
 Goto step 2.

A variant of this runs in polynomial time (w.h.p.), and is robust to perturbations to Pairs and Triples.
General case: asymmetric views

Each view ν has different set of conditional means
\[\{ \vec{\mu}_{\nu,1}, \vec{\mu}_{\nu,2}, \ldots, \vec{\mu}_{\nu,k} \} \subset \mathbb{R}^{d_{\nu}}. \]
General case: asymmetric views

Each view \(v \) has different set of conditional means
\[\{ \bar{\mu}_{v,1}, \bar{\mu}_{v,2}, \ldots, \bar{\mu}_{v,k} \} \subset \mathbb{R}^{d_v}. \]

Reduction: transform \(\tilde{x}_1 \) and \(\tilde{x}_2 \) to “look like” \(\tilde{x}_3 \) via linear transformations.
Asymmetric cross moments

Define asymmetric cross moment:

$$\text{Pairs}_{u,v} := \mathbb{E}[\vec{x}_u \otimes \vec{x}_v].$$
Asymmetric cross moments

Define asymmetric cross moment:

\[\text{Pairs}_{u,v} := \mathbb{E}[\tilde{x}_u \otimes \tilde{x}_v]. \]

Transforming view \(v \) to view 3:

\[C_{v \rightarrow 3} := \mathbb{E}[\tilde{x}_3 \otimes \tilde{x}_u] \mathbb{E}[\tilde{x}_v \otimes \tilde{x}_u]^\dagger \in \mathbb{R}^{d_3 \times d_v} \]

where \(^\dagger\) denotes Moore-Penrose pseudoinverse.
Asymmetric cross moments

Define asymmetric cross moment:

\[
Pairs_{u,v} := E[\vec{x}_u \otimes \vec{x}_v].
\]

Transforming view \(v\) to view 3:

\[
C_{v\rightarrow 3} := E[\vec{x}_3 \otimes \vec{x}_u] E[\vec{x}_v \otimes \vec{x}_u]^{\dagger} \in \mathbb{R}^{d_3 \times d_v}
\]

where \(\dagger\) denotes Moore-Penrose pseudoinverse.

Simple exercise to show

\[
E[C_{v\rightarrow 3} \vec{x}_v | h = j] = \bar{\mu}_{3,j}
\]

so \(C_{v\rightarrow 3} \vec{x}_v\) behaves like \(\vec{x}_3\) (as far as our algorithm can tell).
Part 3. Some applications and open questions

Multi-view mixture models

Multi-view method-of-moments

Some applications and open questions
- Mixtures of Gaussians
- Hidden Markov models and other models
- Topic models
- Open questions

Concluding remarks
Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in \mathbb{R}^n, with component means $\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k \in \mathbb{R}^n$; no minimum separation requirement.

Assumptions:
- Non-degeneracy: component means span k-dim subspace.
- Weak incoherence condition: component means not perfectly aligned with coordinate axes — similar to spreading condition of (Chaudhuri-Rao, '08).

Then, randomly partitioning coordinates into $\ell \geq 3$ views guarantees (w.h.p.) that non-degeneracy holds in all ℓ views.
Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in \mathbb{R}^n, with component means $\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k \in \mathbb{R}^n$; no minimum separation requirement.

Assumptions:
- **non-degeneracy**: component means span k dim subspace.
- **weak incoherence condition**: component means not perfectly aligned with coordinate axes — similar to spreading condition of (Chaudhuri-Rao, ’08).
Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in \mathbb{R}^n, with component means $\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k \in \mathbb{R}^n$; no minimum separation requirement.

Assumptions:

- **non-degeneracy**: component means span k dim subspace.
- **weak incoherence condition**: component means not perfectly aligned with coordinate axes — similar to spreading condition of (Chaudhuri-Rao, '08).

Then, randomly partitioning coordinates into $\ell \geq 3$ views guarantees (w.h.p.) that non-degeneracy holds in all ℓ views.
Hidden Markov models and others

- Mixtures of Gaussians (Hsu-Kakade, ITCS'13)
- HMMs (Anandkumar-Hsu-Kakade, COLT'12)
- Latent Dirichlet Allocation (Anandkumar-Foster-Hsu-Kakade-Liu, NIPS'12)
- Latent parse trees (Hsu-Kakade-Liang, NIPS'12)
- Independent Component Analysis (Arora-Ge-Moitra-Sachdeva, NIPS'12; Hsu-Kakade, ITCS'13)
Hidden Markov models and others

- Mixtures of Gaussians (Hsu-Kakade, ITCS'13)
- HMMs (Anandkumar-Hsu-Kakade, COLT'12)
- Latent Dirichlet Allocation (Anandkumar-Foster-Hsu-Kakade-Liu, NIPS'12)
- Latent parse trees (Hsu-Kakade-Liang, NIPS'12)
- Independent Component Analysis (Arora-Ge-Moitra-Sachdeva, NIPS'12; Hsu-Kakade, ITCS'13)
Hidden Markov models and others

Other models:

1. Mixtures of Gaussians (Hsu-Kakade, ITCS’13)
2. HMMs (Anandkumar-Hsu-Kakade, COLT’12)
3. Latent Dirichlet Allocation
 (Anandkumar-Foster-Hsu-Kakade-Liu, NIPS’12)
4. Latent parse trees (Hsu-Kakade-Liang, NIPS’12)
5. Independent Component Analysis
 (Arora-Ge-Moitra-Sachdeva, NIPS’12; Hsu-Kakade, ITCS’13)
Bag-of-words clustering model

$$(\tilde{\mu}_j)_i = \text{Pr}[\text{see word } i \text{ in document} \mid \text{document topic is } j].$$

- Vocabulary size: $d = 102660$ words.
- Chose $k = 50$.
- For each topic j, show top 10 words i.
Bag-of-words clustering model

$$(\vec{\mu}_j)_i = \Pr[\text{see word } i \text{ in document } | \text{ document topic is } j].$$

- Vocabulary size: $d = 102660$ words.
- Chose $k = 50$.
- For each topic j, show top 10 words i.

<table>
<thead>
<tr>
<th>sales</th>
<th>run</th>
<th>school</th>
<th>drug</th>
<th>player</th>
</tr>
</thead>
<tbody>
<tr>
<td>economic</td>
<td>inning</td>
<td>student</td>
<td>patient</td>
<td>tiger_wood</td>
</tr>
<tr>
<td>consumer</td>
<td>hit</td>
<td>teacher</td>
<td>million</td>
<td>won</td>
</tr>
<tr>
<td>major</td>
<td>game</td>
<td>program</td>
<td>company</td>
<td>shot</td>
</tr>
<tr>
<td>home</td>
<td>season</td>
<td>official</td>
<td>doctor</td>
<td>play</td>
</tr>
<tr>
<td>indicator</td>
<td>home</td>
<td>public</td>
<td>companies</td>
<td>round</td>
</tr>
<tr>
<td>weekly</td>
<td>right</td>
<td>children</td>
<td>percent</td>
<td>win</td>
</tr>
<tr>
<td>order</td>
<td>games</td>
<td>high</td>
<td>cost</td>
<td>tournament</td>
</tr>
<tr>
<td>claim</td>
<td>dodger</td>
<td>education</td>
<td>program</td>
<td>tour</td>
</tr>
<tr>
<td>scheduled</td>
<td>left</td>
<td>district</td>
<td>health</td>
<td>right</td>
</tr>
</tbody>
</table>
Bag-of-words clustering model

palestinian	tax	cup	point	yard
israel	cut	minutes	game	game
israeli	percent	oil	team	play
yasser_arafat	bush	water	shot	season
peace	plan	add	play	touchdown
israeli	bill	tablespoon	laker	quarterback
israelis	taxes	food	season	coach
leader	million	teaspoon	half	defense
official	congress	pepper	lead	quarter
attack		sugar	games	
Bag-of-words Clustering Model

<table>
<thead>
<tr>
<th>percent</th>
<th>al_gore</th>
<th>car</th>
<th>book</th>
<th>taliban</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock</td>
<td>campaign</td>
<td>race</td>
<td>children</td>
<td>attack</td>
</tr>
<tr>
<td>market</td>
<td>president</td>
<td>driver</td>
<td>ages</td>
<td>afghanistan</td>
</tr>
<tr>
<td>fund</td>
<td>george_bush</td>
<td>team</td>
<td>author</td>
<td>military</td>
</tr>
<tr>
<td>investor</td>
<td>bush</td>
<td>won</td>
<td>read</td>
<td>official</td>
</tr>
<tr>
<td>companies</td>
<td>clinton</td>
<td>win</td>
<td>newspaper</td>
<td>united_states</td>
</tr>
<tr>
<td>analyst</td>
<td>vice</td>
<td>racing</td>
<td>web</td>
<td>terrorist</td>
</tr>
<tr>
<td>money</td>
<td>presidential</td>
<td>track</td>
<td>writer</td>
<td>war</td>
</tr>
<tr>
<td>investment</td>
<td>million</td>
<td>season</td>
<td>written</td>
<td>bin</td>
</tr>
<tr>
<td>economy</td>
<td>democratic</td>
<td>lap</td>
<td>sales</td>
<td></td>
</tr>
</tbody>
</table>
Bag-of-words clustering model

<table>
<thead>
<tr>
<th>com</th>
<th>court</th>
<th>show</th>
<th>film</th>
<th>music</th>
</tr>
</thead>
<tbody>
<tr>
<td>www</td>
<td>case</td>
<td>network</td>
<td>movie</td>
<td>song</td>
</tr>
<tr>
<td>site</td>
<td>law</td>
<td>season</td>
<td>director</td>
<td>song</td>
</tr>
<tr>
<td>web</td>
<td>lawyer</td>
<td>nbc</td>
<td>play</td>
<td>song</td>
</tr>
<tr>
<td>sites</td>
<td>federal</td>
<td>cb</td>
<td>character</td>
<td>song</td>
</tr>
<tr>
<td>information</td>
<td>government</td>
<td>program</td>
<td>actor</td>
<td>song</td>
</tr>
<tr>
<td>online</td>
<td>decision</td>
<td>television</td>
<td>show</td>
<td>million</td>
</tr>
<tr>
<td>mail</td>
<td>trial</td>
<td>series</td>
<td>movies</td>
<td>show</td>
</tr>
<tr>
<td>internet</td>
<td>microsoft</td>
<td>night</td>
<td>million</td>
<td>part</td>
</tr>
<tr>
<td>telegram</td>
<td>right</td>
<td>new_york</td>
<td>part</td>
<td>album</td>
</tr>
</tbody>
</table>

etc.
Some open questions

What if $k > d_v$? (relevant to overcomplete dictionary learning)
Some open questions

What if $k > d_v$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\vec{x}_v \mapsto f_v(\vec{x}_v)$?
Some open questions

What if $k > d_v$? (relevant to overcomplete dictionary learning)

▶ Apply some non-linear transformations $\tilde{x}_v \mapsto f_v(\tilde{x}_v)$?

▶ Combine views, e.g., via tensor product

\[
\tilde{x}_{1,2} := \tilde{x}_1 \otimes \tilde{x}_2, \quad \tilde{x}_{3,4} := \tilde{x}_3 \otimes \tilde{x}_4, \quad \tilde{x}_{5,6} := \tilde{x}_5 \otimes \tilde{x}_6, \quad \text{etc.} \]
Some open questions

What if \(k > d_v \)? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations \(\tilde{x}_v \mapsto f_v(\tilde{x}_v) \)?
- Combine views, e.g., via tensor product

\[
\tilde{x}_{1,2} := \tilde{x}_1 \otimes \tilde{x}_2, \quad \tilde{x}_{3,4} := \tilde{x}_3 \otimes \tilde{x}_4, \quad \tilde{x}_{5,6} := \tilde{x}_5 \otimes \tilde{x}_6, \quad \text{etc.}
\]

Can we relax the multi-view assumption?
Some open questions

What if $k > d_v$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\bar{x}_v \mapsto f_v(\bar{x}_v)$?
- Combine views, e.g., via tensor product

$$\tilde{x}_{1,2} := \bar{x}_1 \otimes \bar{x}_2, \quad \tilde{x}_{3,4} := \bar{x}_3 \otimes \bar{x}_4, \quad \tilde{x}_{5,6} := \bar{x}_5 \otimes \bar{x}_6,$$
 etc.?

Can we relax the multi-view assumption?

- Allow for richer hidden state?
 (e.g., independent component analysis)

"Gaussianization" via random projection?
Some open questions

What if $k > d_v$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\tilde{x}_v \mapsto f_v(\tilde{x}_v)$?
- Combine views, e.g., via tensor product

\[\tilde{x}_{1,2} := \tilde{x}_1 \otimes \tilde{x}_2, \quad \tilde{x}_{3,4} := \tilde{x}_3 \otimes \tilde{x}_4, \quad \tilde{x}_{5,6} := \tilde{x}_5 \otimes \tilde{x}_6, \quad \text{etc.} \]

Can we relax the multi-view assumption?

- Allow for richer hidden state?
 (e.g., independent component analysis)
- “Gaussianization” via random projection?
Part 4. Concluding remarks

Multi-view mixture models

Multi-view method-of-moments

Some applications and open questions

Concluding remarks
Concluding remarks

Take-home messages:

▶ Power of multiple views: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.

▶ Overcoming complexity barriers: Some provably hard estimation problems become easy after ruling out "degenerate" cases.

▶ "Blessing of dimensionality" for estimators based on method-of-moments.
Concluding remarks

Take-home messages:

▶ **Power of multiple views**: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.

▶ Overcoming complexity barriers: Some provably hard estimation problems become easy after ruling out "degenerate" cases.

▶ "Blessing of dimensionality" for estimators based on method-of-moments.
Concluding remarks

Take-home messages:

- **Power of multiple views**: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.

- **Overcoming complexity barriers**: Some provably hard estimation problems become easy after ruling out “degenerate” cases.
Concluding remarks

Take-home messages:

- **Power of multiple views**: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.

- **Overcoming complexity barriers**: Some provably hard estimation problems become easy after ruling out “degenerate” cases.

- “Blessing of dimensionality” for estimators based on method-of-moments.
Thanks!

(Co-authors: Anima Anandkumar, Dean Foster, Rong Ge, Sham Kakade, Yi-Kai Liu, Matus Telgarsky)

http://arxiv.org/abs/1210.7559