Learning Structural Correspondences Using Synchronous Neural Language Models

Stephan Gouws1, GJ van Rooyen1 and Yoshua Bengio2

1Stellenbosch University
and
2University of Montreal
The oncogenic mutated forms of the ras proteins are constitutively active and interfere with normal signal transduction.

The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.
The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.

The oncogenic mutated forms of the ras proteins are constitutively active and interfere with normal signal transduction.
Domain adaptation

- How can we train a system on a source distribution to perform well on a target distribution?

Diagram:
- **Source** (Lots of labels)
- **Target** (Little/no labels)
- **Classifier**: POS, NER..
Domain adaptation

• How can we train a system on a source distribution to perform well on a target distribution?
Domain adaptation

- How can we train a system on a source distribution to perform well on a target distribution?
The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.
The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.
English Language (WSJ)

<table>
<thead>
<tr>
<th>DT</th>
<th>NN</th>
<th>VBZ</th>
<th>DT</th>
<th>NN</th>
<th>IN</th>
<th>DT</th>
<th>JJ</th>
<th>NN</th>
<th>CC</th>
</tr>
</thead>
</table>
| The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.

Different Language (Afrikaans)

<table>
<thead>
<tr>
<th>??</th>
<th>??</th>
<th>??</th>
<th>??</th>
<th>??</th>
<th>??</th>
<th>??</th>
<th>??</th>
<th>??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die botsing is ’n teken van ’n nuwe taaiheid en verdeeldheid in Japan se eens knus finansiële kringe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part-of-Speech Tagging

English Language (WSJ)

<table>
<thead>
<tr>
<th>DT</th>
<th>NN</th>
<th>VBZ</th>
<th>DT</th>
<th>NN</th>
<th>IN</th>
<th>DT</th>
<th>JJ</th>
<th>NN</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different Language (Afrikaans)

<table>
<thead>
<tr>
<th>DT</th>
<th>??</th>
<th>VBZ</th>
<th>DT</th>
<th>??</th>
<th>IN</th>
<th>DT</th>
<th>??</th>
<th>??</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die botsing is ‘n teken van ‘n nuwe taaiheid en verdeeldheid in Japan se eens knus finansiële kringe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE

TARGET
The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.
The clash is a sign of a new toughness and divisiveness in Japan’s once-cozy financial circles.

Die botsing is ’n teken van ’n nuwe taaiheid en verdeeldheid in Japan se eens knus finansiële kringe.
Structural Correspondence Learning [Blitzer et al. 2006]

- Φ should make the domains look as similar as possible
- But should also allow us to classify well
- Φ defines a \textit{linear} mapping between feature spaces of both domains
This Work: Deep Structural Correspondence Learning

We use Neural Language Models [Bengio et al., 2003]
This Work: Deep Structural Correspondence Learning

- Embedding Space \mathbf{R}_1
- Embedding Space \mathbf{R}_2
- Model $f_1(\mathbf{R}_1, \Theta_1)$
- Model $f_2(\mathbf{R}_2, \Theta_2)$
- Data from domain 1
- Data from domain 2

B: Correspondence Learning
A: Dimensionality Reduction
This Work: Deep Structural Correspondence Learning

- Embedding Space \mathbb{R}_1
 - Model $f_1(\mathbb{R}_1, \Theta_1)$
 - Data from domain 1
- Embedding Space \mathbb{R}_2
 - Model $f_2(\mathbb{R}_2, \Theta_2)$
 - Data from domain 2

Constrain models to be as similar as possible

Constrain representations of **pivot pairs** to be as similar as possible
This Work: *Deep Structural Correspondence Learning*

Hypothesis: Aligning a *well-chosen subset* of the vocabularies ("pivot pairs") w.r.t. each other, will iteratively align the rest of the words in the 2 vocabularies in a meaningful way w.r.t. each other in the shared feature space.
The Log Bilinear NLM

[Mcih & Hinton 2007]

\[\hat{r} = \sum_i C_i r_{w_i} \]

- Multinomial over output vocabulary
- Predicted next word’s embedding vector
- Previous 4 words’ low-dim embedding vectors
- Previous 4 words’ high-dim representation
- \(P(w_1) \) to \(P(w_{|V|}) \)

4\(|V|\)-length Embedding layer

|\(|V|\)-length Softmax layer

```
000000..1..0000
```

```
| "cat" |
| "sits" |
| "on" |
| "the" |
```

```
```

```
```

```
```

```
```

```
```
Augmented cost function

\[J_{TOT} = J_{1}^{nll} + J_{2}^{nll} \]

Fit the data well
Augmented cost function

\[J^{TOT} = J_1^{nll} + J_2^{nll} + \alpha J^R(\theta_1, \theta_2) + \beta J^f(\theta_1, \theta_1) \]

Fit the data well

Learn structural similarities
Augmented cost function

$$J_{TOT} = J_{1}^{nll} + J_{2}^{nll} + \alpha J_{R}^{R}(\theta_1, \theta_2) + \beta J_{f}^{f}(\theta_1, \theta_1)$$

- Fit the data well
- Learn structural similarities
Constraining the Embeddings

$$J^R(\theta_1, \theta_2) = \sum_{r_i, r_j \in \text{Pivots}} \lambda_{ij} \| r_i - r_j \|^2$$

Push known pivot pairs \((r_i, r_j) \in V_1 \times V_2\) closer together by minimizing the weighted sum of squared distances between them.
Augmented cost function

\[J_{TOT} = J_{1}^{ll} + J_{2}^{ll} + \alpha J^{R}(\theta_{1}, \theta_{2}) + \beta J^{f}(\theta_{1}, \theta_{1}) \]

Fit the data well

Learn structural similarities
Constraining the learned Functions

• Intuitively: In the cases where it is appropriate, we constrain the learned NLM functions f to be as similar as possible while modelling the data as accurately as possible
 – Reduces degrees of freedom

• [Erhan et al. 2010]
Experiments I: Synthetic Data

- Sampled two datasets each **without** replacement from LA Times, encoded each in a **different vocabulary**
 - “the_1 president_1 of_1 the_1 united_1 ...”
 - “between_2 the_2 hours_2 of_2 midnight_2...”
- Give the networks k % of pivot pairs (chose most frequent words)
 - (president_1, president_2), ...

EVALUATE: We measure the similarity of vectors for all translation pairs
Experiments I: Synthetic Data

![Graph showing the average distance between all pivots over training time for different pivot percentages. The x-axis represents training time in units of 10^3, ranging from 0 to 5. The y-axis represents the average distance between pivots, ranging from 0.75 to 1.15. There are four lines: green for 1% pivots, blue for no pivots, red for 5% pivots, and pink for 10% pivots. The graph illustrates how the average distance between pivots decreases as training time increases.]
Experiments II: English-French

- Sampled two non-parallel datasets from English and French newswire text
- Provided models with list of $k\%$ translation pairs

EVALUATE: We measure the similarity of vectors for all translation pairs
Experiments II: English-French

- No pivots
- 1% Pivots
- 10% Pivots, function constraint
- 10% Pivots, no function constraint

Graph showing the average distance between all pivots over training (minibatches) for different pivot percentages and conditions.
Experiments II: English-French

NLL of individual models on validation: 4.56 (EN) and 4.09 (FR)
NLL of coupled models on validation: 4.57 (EN) and 4.10 (FR)
Conclusion

• We investigated the hypothesis that NLMs can learn similar features for similar words in two domains, given a well-chosen prior subset of pivot words in the two domains.
• Our results indicate that even 5% pivot pairs are sufficient to start convergence.
• Previous work has shown these features to be useful for POS-tagging and NER in the single-domain setting [Turian et al, 2010]
• Future work will evaluate these learned features in multi-domain sequence-tagging tasks.
Thank you!