Network topology as a source of information

Nataša Pržulj

Department of Computing
Imperial College London

November 6, 2012
Vision

- Network topology - contains currently hidden biological information
- Need new computational tools to mine network data → biology
- “Network biology:”
 - In its infancy & rich in open research problems
 - Many unforeseen problems likely to emerge
 - Promising to remain at the top of scientific endeavour
 - Proposed research is well timed
 → Highly likely to make an impact

Nataša Pržulj
natasha@imperial.ac.uk
Overview

Network Topology - new source of biological information

1. Data, Problems, Introduction, Background

2. New computational techniques
 - Network Alignment → function and phylogeny
 - How to measure topology? → Link it with function
 - Modeling networks and why to model them
 - GraphCrunch 2 software for network analysis
Data

Advances in biotechnology

Networks can model:
- gene interactions
- protein structure
- protein-protein interactions
- metabolism
- ...

X → Y represents transcription network

gene x gene y

Nataša Pržulj
natasha@imperial.ac.uk
Advances in biotechnology

Networks can model:
- gene interactions
- protein structure
- protein-protein interactions
- metabolism
- ...

Data
Data

Advances in biotechnology

Networks can model:
- gene interactions
- protein structure
- protein-protein interactions
- metabolism
- ...

Nataša Pržulj
natasha@imperial.ac.uk
Data

➢ Advances in biotechnology

Networks can model:
➢ gene interactions
➢ protein structure
➢ protein-protein interactions
➢ metabolism
➢ …
Data

➢ Advances in biotechnology

Networks can model:
➢ gene interactions
➢ protein structure
➢ protein-protein interactions
➢ metabolism
➢ ...

Network structure ↔ function
Problems

- Making sense of these data
- Graph theory-based methods
 - Not statistical (inductive), but
 - Theory-based (mechanistic)

Why? ➔ Understanding

- Prediction / reproduction:
 - Biological function
 - Disease genes/proteins
 - Reconstruct phylogeny...
Problems

• Making sense of these data
• Graph theory-based methods
 • Not statistical (inductive), but
 • Theory-based (mechanistic)

Why? ➞ Understanding

• Prediction / reproduction:
 • Biological function
 • Disease genes/proteins
 • Reconstruct phylogeny...
Problems

• **Why analyze network data?**
 - Network topology: new source of biological information, not mere statistics
 - Complementary to sequence data
 - Need tools to mine networks: topology ↔ biology
• Why analyze network data?
 - Network topology: new source of biological information, not mere statistics
 - Complementary to sequence data
 - Need tools to mine networks: topology ↔ biology
Why analyze network data?

- Network topology: new source of biological information, not mere statistics
- Complementary to sequence data
- Need tools to mine networks: topology ↔ biology

Why analyze network data?

- Network topology: new source of biological information, not mere statistics
- Complementary to sequence data
- Need tools to mine networks: topology ↔ biology

Problems

Why analyze network data?

- Network topology: new source of biological information, not mere statistics
- Complementary to sequence data
- Need tools to mine networks: topology ↔ biology
 - Why?
 - Computational intractability (NP-hardness) of many problems dealing with large networks
1. Computational “hardness” (intractability) of graph theoretic problems
 E.g., NP-completeness of subgraph isomorphism
 ➔ Cannot exactly compare/align networks
 ➔ heuristics (approximate solutions)
 ➔ Exact comparison inappropriate in biology
 ➔ due to biological variation
2. Data noise ➔ robust tools
 ➔ revise models as data sets evolve
Introduction and Background

Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)
Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - Network “motifs” and subgraphs (U. Alon’s group, ’02-’04)
Introduction and Background

Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)
Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)
Properties of Large Networks (heuristic comparisons)

• **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

• **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)
Introduction and Background

Properties of Large Networks (heuristic comparisons)

• **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

• **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)
Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)

![Degree Distribution of D. Melanogaster PPI Network](image1)

![Induced vs. Partial Subgraphs](image2)
Introduction and Background

Properties of Large Networks (heuristic comparisons)

• **Global**
 • Degree distribution
 • Diameter
 • Clustering coefficient/spectrum

• **Local:**
 • network “motifs” and subgraphs (U. Alon’s group, ’02-’04)

Induced vs. **Partial** Subgraphs

Nataša Pržulj
natasha@imperial.ac.uk
Introduction and Background

Properties of Large Networks (heuristic comparisons)

• **Global**
 • Degree distribution
 • Diameter
 • Clustering coefficient/spectrum

• **Local:**
 • network “motifs” and subgraphs (U. Alon’s group, ’02–’04)

First 3-node path

Induced vs. Partial Subgraphs

Nataša Pržulj
natasha@imperial.ac.uk
Introduction and Background

Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-'04)

[Diagrams showing degree distribution and examples of subgraphs]
Introduction and Background

Properties of Large Networks (heuristic comparisons)

- **Global**
 - Degree distribution
 - Diameter
 - Clustering coefficient/spectrum

- **Local:**
 - network “motifs” and subgraphs (U. Alon’s group, ’02-’04)

Induced vs. Partial Subgraphs

Third 3-node path

Nataša Pržulj
natasha@imperial.ac.uk
Properties of Large Networks (heuristic comparisons)

Global
- Degree distribution
- Diameter
- Clustering coefficient/spectrum

Local:
- network “motifs” and subgraphs (U. Alon’s group, ’02-’04)

The only triangle

Induced vs. Partial Subgraphs
Introduction and Background

Examples of different model networks:

- Erdös-Rényi (ER)
- Small-World
- Scale-Free (SF)
- Hierarchical
- Geometric (GEO)
Introduction and Background

Examples of different model networks:

Erdös-Rényi (ER) Small-World Scale-Free (SF)

Hierarchical

Geometric (GEO)
Overview

Network Topology - new source of biological information

1. Data, Problems, Introduction, Background
2. New computational techniques
 - Network Alignment → function and phylogeny
 - How to measure topology? → Link it with function
 - Modeling networks and why to model them
 - GraphCrunch 2 software for network analysis
Overview

Network Topology - new source of biological information

1. Data, Problems, Introduction, Background
2. New computational techniques
 - Network Alignment → function and phylogeny
 - How to measure topology? → Link it with function
 - Modeling networks and why to model them
 - GraphCrunch 2 software for network analysis

All robust to noise
2. Network Analysis and Modeling

New measures of network local structure

Definition 3 Graphlets are small connected non-isomorphic subgraphs of a graph G induced on $n \geq 3$ nodes of G.

For $n = 3, 4, 5, \ldots, 10$, there are $2, 6, 21, \ldots, 11716571$ graphlets!

All Graphlets on 3-5 nodes:

- 3-node graphlets
 - 1
 - 2
 - 3

- 4-node graphlets
 - 4
 - 5
 - 6
 - 7
 - 8

- 5-node graphlets
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21
 - 22
 - 23
 - 24
 - 25
 - 26
 - 27
 - 28
 - 29

2. Network Analysis and Modeling

New measures of network local structure

Definition 3 Graphlets are small connected non-isomorphic sub-graphs of a graph G induced on $n \geq 3$ nodes of G.

For $n = 3, 4, 5, \ldots, 10$, there are $2, 6, 21, \ldots, 11716571$ graphlets!

All Graphlets on 3-5 nodes:

- **Induced**
- **Of any frequency**

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and **Modeling**

Graphlet Frequencies: *S. cerevisiae* High-Confidence PPI Network

(von Mering et al., *Nature* 417)

2. Network Analysis and **Modeling**

Graphlet Frequencies: *D. melanogaster* **Noisy** PPI Network
(Giot et al., *Science* 302) (**77%** of edges are of **low confidence**)

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and **Modeling**

Graphlet Frequencies: *D. melanogaster* Higher-Confidence PPI Network

*(Giot *et al.*, *Science* 302)*

2. Network Analysis and Modeling

How to measure topology around a node → graphlets

• Degree of a node

2. Network Analysis and Modeling

Definitions:

An *isomorphism* \(f \) from graph \(G \) to graph \(H \) is a bijection: \(f : V(G) \to V(H) \) such that \(xy \) is an edge of \(G \) iff \(f(x)f(y) \) is an edge of \(H \).

An *automorphism* is an isomorphism from a graph to itself.

The automorphisms of a graph \(G \) form a *group*, called the *automorphism group of \(G \)*, and commonly denoted by \(\text{Aut}(G) \).

For a node \(x \) of graph \(G \), the *automorphism orbit of \(x \)* is \(\text{Orb}(x) = \{y \in V(G') | y = f(x) \text{ for some } f \in \text{Aut}(G)\} \), where \(V(G') \) is the set of nodes of graph \(G \).

2. Network Analysis and Modeling

How to measure topology around a node → graphlets

“Graphlet Degree Vector” (GDV) of a node u:

$$\text{GDV}(u) = (u_0, u_1, u_2, \ldots, u_{72})$$

2. Network Analysis and Modeling

How to measure topology around a node → graphlets

Graphlet Degree (GD) vectors, or “node signatures”

\[\text{GDV}(u) = (2, 1, 1, 0, 0, 1) \]

2. Network Analysis and Modeling

How to measure topology around a node → graphlets

Similarity measure between nodes’ Graphlet Degree vectors

2. Network **Analysis** and Modeling

Signature Similarity Measure

- \(o_i \) is number of orbits that affect orbit \(i \in \{0, \ldots, 72\} \)
- \(w_i = 1 - \frac{\log(o_i)}{\log(73)} \)
- Distance between the \(i^{th} \) orbits of nodes \(u \) and \(v \) is
 \[
 D_i(u, v) = w_i \times \frac{|\log(u_i+1) - \log(v_i+1)|}{\log(\max\{u_i, v_i\}+2)}
 \]
- The total distance between nodes \(u \) and \(v \) is
 \[
 D(u, v) = \frac{\sum_{i=0}^{72} D_i}{\sum_{i=0}^{72} w_i}
 \]
- The **signature similarity** between nodes \(u \) and \(v \) is
 \[
 S(u, v) = 1 - D(u, v)
 \]

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network topology -> biological function & disease

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network topology → biological function & disease

2. Network Analysis and Modeling

Network topology \rightarrow biological function & disease

2. Network Analysis and Modeling

Network topology \rightarrow biological function & disease

Significantly enriched:
- Biological function
- Protein complexes
- Sub-cellular localization
- Tissue expression
- Disease

2. Network **Analysis and Modeling**

Network topology → biological function & disease

⇒ Find new members of melanin production pathways

⇒ Same cancer type → more similar topology in PPI net

⇒ Could not have been identified by existing approaches

2. Network **Analysis** and **Modeling**

Network topology \rightarrow biological function & disease

\Rightarrow Find new members of yeast proteosome PPI network

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Generalize Degree Distribution

The degree distribution measures:
- the number of nodes “touching” \(k \) edges for each value of \(k \).

For each of the 73 orbits, count:
- the number of nodes “touching” a particular graphlet at a particular orbit

- 73 Graphlet Degree Distributions (GDDs)

We used GDDs to show that:
- PPI networks of eukaryotes are the best modeled by Geometric Graphs
2. Network Analysis and Modeling

Network Alignment

- Exact network comparisons are computationally intractable
 - Subgraph Isomorphism Problem is NP-C (Cook, 1971)
 - Rely on approximate or heuristic approaches
2. Network Analysis and Modeling

Network Alignment:

GRAAL family of algorithms

Global Network Alignment algorithms - topology-based:

1. **GRAAL**
 - seed-and-extend, finds *an alignment*

2. **H-GRAAL**
 - finds *an optimal* alignment

3. **MI-GRAAL**
 - combines the two + uses *any number and type of node similarity measures*

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find **topology around nodes** across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)
- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs

- Repeat seed-and-extend on 2nd and 3rd powers of the two graphs
- Power p of G is: $G^p(V,E^p)$, edge $(u,v) \in E^p$ iff $d_G(u,v) \leq p$
- This is to allow for “insertions” and “deletions”

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

Predict function

IsoRank:
116 nodes and 261 edges

GRAAL:
267 nodes and 900 edges

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

2. Network Analysis and Modeling

Network Alignment:

GRAAL (GRAph ALigner)

- Find topology around nodes across different networks
- Align “topologically-similar” nodes – “seed nodes” in each network
- Extend around seed nodes
- Break ties randomly; ~60% of alignment consistent across runs
 - Align PPI networks of yeast and human

All statistically significant

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

GRAAL family of algorithms

- Align “topologically-similar” nodes
- BUT, not in a seed-and-extend greedy way
- Use the Hungarian Algorithm for minimum weight bipartite matching
 - Finds *an optimal alignment* with respect to the cost function
 - “Core (stable) alignment” - present in all optimal alignments
 - Problem: running time

Yeast - Human alignment:

- Millions of optimal alignments
- 72% of yeast proteins have a unique human protein that they’re aligned to by *every* optimal alignment

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

GRAAL family of algorithms

MI-GRAAL (Matching-based Integrative)

- Includes **any number and type of node similarity** measures:
 - e.g., network topology, sequence similarity...
- Each similarity measure votes as an independent agent → “seed nodes”
- Combines the two (GRAAL and H-GRAAL):
 - Seed-and-extend approach
 - Break the problem into several matching problems:
 - consider aligning nodes only if they have aligned neighbors, hence increase number of aligned edges (EC)
 - Fast enough for PPI networks

Isorank:
116 nodes and 261 edges

GRAAL:
267 nodes and 900 edges

MI-GRAAL:
1,858 nodes and 3,467 edges

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

GRAAL family of algorithms

MI-GRAAL (Matching-based Integrative)

- 78% of yeast proteins are connected and contained in human PPI net (was about 11% in GRAAL and H-GRAAL)
- Produces stable alignments - don’t change over different runs
- Allows a user to experiment with combinations of similarity measures
- Aligned PPI networks of herpes viruses using only topology

Application: Track Network Dynamics

Nataša Pržulj
natasha@imperial.ac.uk
Hypothesis:
Topologically central nodes are biologically important

Questions:
A. How to measure “topological centrality” in a network?
B. What genes are “biologically important”?
2. Network Analysis and Modeling

Centrality and domination → biological function & disease

A. How to measure “topological centrality” in a network?

1. Graphlet Degree Centrality (GDC)

\[GDC(v) = \sum_{i=0}^{72} w_i \times \log(v_i + 1) \]

Dense neighborhoods

2. Dominating Set (DS)

- min. size: NP-hard

“Spine” - signal transduction?

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Centrality and domination \rightarrow biological function & disease

Fig. 2. The overlap of BC genes from the four categories in the human PPI network [48].

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Centrality and domination \(\rightarrow\) biological function & disease

- Enrichment in DS of “biologically central” and signaling pathway (SP) genes, \(p\)-values \(\leq 10^{-11}\)
- Non-DS: no significant enrichment

- GO terms: 153 MF, 574 BP, 44 CC significantly enriched in DS
 7 MF, 7 BP, 0 CC significantly enriched in non-DS

\{ \text{No overlap} \}

Drug targets:
- In DS U GDC-central: 11\%, \(p\)-value=\(10^{-4}\)
- In DS \(\cap\) GDC-central: 32\%, \(p\)-value=0

Central/DS and non-central/DS genes group by different functions

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Machine Learning on network properties

• Different models best-fitting w.r.t. different network properties
• Integrate many network properties into “network fingerprint” vector
• Apply a series of machine learning classifiers to network fingerprints:
 1. Backpropagation method (BP)
 2. Probabilistic neural networks (PNN)
 3. Decision tree (DT)
 4. Multinomial naive Bayes classifier (MNB)
 5. Support vector machine (SVM)

➢ PPI networks are geometric

2. Network Analysis and **Modeling**

Network Embedding into Space

- MDS-based embedding of PPI nets into low dimensional space
- Shortest paths play a role of distances

2. Network Analysis and Modeling

Network Embedding into Space

- MDS-based embedding of PPI nets into low dimensional space
- Shortest paths play a role of distances

```
D. J. Higham, M. Rasajski, N. Przulj, “Fitting a Geometric Graph to a Protein-Protein Interaction Network”, Bioinformatics, 24(8), 1093-1099, 2008.
```
2. Network Analysis and Modeling

PPI Network are GEOMETRIC

- Erdős-Rényi (ER)
- Small-World
- Scale-Free (SF)
- Hierarchical
- Geometric (GEO)

- De-noise PPI networks
- Network evolution
- Fast algorithms

Nataša Pržulj
natasha@imperial.ac.uk
2. Network Analysis and Modeling

Application: de-noising PPI networks

- Embed a PPI network into space
- Learn from coordinates of node embedding points probability densities \(p(\text{dist} \mid \text{edge}) \) and \(p(\text{dist} \mid \text{non-edge}) \)
- Choose a threshold \(\delta \)
- For each pair of nodes at distance \(\leq \delta \), compute its Confidence Score:

\[
CS(i,j) = \frac{p(\text{edge}(i,j) \mid \text{dist}(i,j))}{p(\text{edge}(i,j) \mid \text{dist}(i,j)) + p(\text{nonedge}(i,j) \mid \text{dist}(i,j))}
\]

⇒ Predict new PPIs

Why PPI networks might be geometric?

- Intuitive “geometricity” of PPI networks:
 - Genes exist in some bio-chemical space
 - Gene duplications and mutations
 - Natural selection = “evolutionary optimization”
GraphCrunch 2 software

- 1,663 downloads
- 2nd most accessed article in all of BMC journals in February 2011
- For biologists: Select Data, Select Analysis → Run, View Results
- Open-source

GraphCrunch 2 demo
Other Research Projects

2) Protein Structure Graphs:
 - New null model:

3) Brain functional networks:

4) Economic networks

Etc.
Acknowledgements

➢ Funding: ERC Starting Grant, €1.6M (2012-2017)
 NSF CDI: $2M (2010 — 2014)
 GlaxoSmithKline: £80K (2010-2014)

➢ Alumni:

1. Tijana Milenković, Ph.D.
 Assistant Prof., U. of Notre Dame
2. Oleksii Kuchaiev, Ph.D.
 Microsoft, Redmond
3. Vesna Memišević, Ph.D.
 US Army, Bioinformatics Res.
Acknowledgements

➢ **Funding:** ERC Starting Grant, €1.6M (2012-2017)
 - GlaxoSmithKline: £80K (2010-2014)

➢ **Post-docs:**
 - Noel Malod-Dognin
 - Joana Goncalves

➢ **PhD students:**
 - Vuk Janjic, Anida Sarajlic, Omer Yaveroglu and Kai Sun

Looking for post-docs & new Ph.D. students (ERC, NSF)