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Graphical Models: Core Ideas and Notions� Decomposition: Under certain conditions a distribution
�

(e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic

knowledge about this domain, can be decomposed into a set � � 1 ��������� ����� of
(overlapping) distributions on lower-dimensional subspaces.� Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution

�
.� Such a decomposition can nicely be represented as a graph (in the sense of

graph theory), and therefore it is called a Graphical Model.� The graphical representation	 encodes conditional independences that hold in the distribution,	 describes a factorization of the probability distribution,	 indicates how evidence propagation has to be carried out.
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� The reasoning space consists of a finite set Ω of world states.� The world states are described by a set of attributes ��� , whose domains��� ( � )
1 ��������� � ( � )� i � can be seen as sets of propositions or events.� The events in a domain are mutually exclusive and exhaustive.� The reasoning space is assumed to contain the true, but unknown state � 0.

Overview� Graphical Models: Core Ideas and Notions� A Simple Example: How does it work in principle?� Conditional Independence Graphs� conditional independence and the graphoid axioms� separation in (directed and undirected) graphs� decomposition/factorization of distributions� Evidence Propagation in Graphical Models� Building Graphical Models� Learning Graphical Models from Data� quantitative (parameter) and qualitative (structure) learning� evaluation measures and search methods� learning by conditional independence tests� learning by measuring the strength of marginal dependences� Summary

A Simple Example

Example World Relation

color shape size

small
medium
small
medium
medium
large
medium
medium
medium
large

� 10 simple geometrical objects, 3 attributes.� One object is chosen at random and examined.� Inferences are drawn about the unobserved attributes.

The Relation in the Reasoning Space

Relation

color shape size

small
medium
small
medium
medium
large
medium
medium
medium
large

Relation in the Reasoning Space
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Each cube represents one tuple.



Reasoning$ Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.$ From the prior knowledge it follows that the given object must be% either a triangle or a square and% either medium or large.
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Cylindrical Extensions and Their Intersection
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Intersecting the cylindrical ex-
tensions of the projection to
the subspace formed by color
and shape and of the projec-
tion to the subspace formed by
shape and size yields the origi-
nal three-dimensional relation.

Using other Projections
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Prior Knowledge and Its Projections
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Reasoning with Projections

The same result can be obtained using only the projections to the subspaces
without reconstructing the original three-dimensional space:
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This justifies a network representation:
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Is Decomposition Always Possible?
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A Probability Distribution

all numbers in
parts per 1000

S S T
S S TU U
small

medium

large
s m l

small
medium

large

20 90 10 80
2 1 20 17
28 24 5 3

18 81 9 72
8 4 80 68
56 48 10 6

2 9 1 8
2 1 20 17
84 72 15 9

40 180 20 160
12 6 120 102
168 144 30 18

50 115 35 100
82 133 99 146
88 82 36 34

20 180 200
40 160 40
180 120 60

220 330 170 280

400
240
360

240

460

300

V The numbers state the probability of the corresponding value combination.

Probabilistic DecompositionW As for relational networks, the three-dimensional probability distribution can
be decomposed into projections to subspaces, namely the marginal distribution
on the subspace formed by color and shape and the marginal distribution on
the subspace formed by shape and size.W The original probability distribution can be reconstructed from the marginal
distributions using the following formulae XZY\[ ]^[`_ :a ( b

(color)c [ b (shape)d [ b (size)e )
=
a ( b

(color)c [ b (shape)d ) f a ( b
(size)e ∣∣∣

b
(shape)d )

=
a ( b (color)c [ b (shape)d ) f a ( b (shape)d [ b (size)e )a ( b (shape)d )W These equations express the conditional independence of attributes color and

size given the attribute shape, since they only hold if XZY\[ ]g[`_ :a ( b (size)e ∣∣∣
b
(shape)d )

=
a ( b (size)e ∣∣∣

b
(color)c [ b (shape)d )

Conditional Independence: An Example
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Reasoning: Computing Conditional Probabilities

all numbers in
parts per 1000

j j k
j j kl l
small

medium

large
s m l

small
medium

large

0 0 0 286
0 0 0 61
0 0 0 11

0 0 0 257
0 0 0 242
0 0 0 21

0 0 0 29
0 0 0 61
0 0 0 32

0 0 0 572
0 0 0 364
0 0 0 64

0 0 0 358
0 0 0 531
0 0 0 111

29 257 286
61 242 61
32 21 11

0 0 0 1000

572
364
64

122

520

358

m Using the information that the given object is green.

Reasoning with Projections

Again the same result can be obtained using only projections to subspaces
(marginal distributions):

new

old
colorn

o new old

shape

o
s m l

ps m l

old

new
sizeq old

new
q old
new

0 0 0 1000

220 330 170 280r new
oldq 40

0
q 180

0
q 20

0
q 160
572q 12

0
q 6

0
q 120

0
q 102
364q 168

0
q 144

0
q 30

0
q 18

64

∑
line

572 400

364 240

64 360

r new
old

q 20
29
q 180
257
q 200
286q 40

61
q 160
242
q 40

61q 180
32
q 120

21
q 60

11

∑
column

240 460 300

122 520 358

This justifies a network representation:
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Conditional Independence: An Example
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Conditional Independence: An Example
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(Semi-)Graphoid Axioms

Definition: Let w be a set of (mathematical) objects and ( x`y yzxZ{|x ) a three-place
relation of subsets of w . Furthermore, let }�~|��~���~ and � be four disjoint subsets
of w . The four statements

symmetry: ( ��y y���{^� ) � ( �zy y���{�� )

decomposition: ( }�����y y���{�� ) � ( }�y y���{�� ) � ( ��y y���{^� )

weak union: ( }�����y y���{�� ) � ( ��y y���{^����} )

contraction: ( ��y y���{^����} ) � ( }�y y���{^� ) � ( }�����y y���{^� )

are called the semi-graphoid axioms. A three-place relation ( x\y yzx�{gx ) that sat-
isfies the semi-graphoid axioms for all }�~���~���~ and � is called a semi-graphoid.
The above four statements together with

intersection: ( }�y y���{^����� ) � ( ��y y���{^����} ) � ( }�����y y���{^� )

are called the graphoid axioms. A three-place relation ( x`y y�x�{�x ) that satisfies
the graphoid axioms for all }�~|��~|��~ and � is called a graphoid.

Separation in Graphs

Definition: Let � = ( ���\� ) be an undirected graph and  ���¡�� and ¢ three
disjoint subsets of nodes. ¢ u-separates   and ¡ in � , written £  ¥¤|¢�¤g¡§¦©¨ ,
iff all paths from a node in   to a node in ¡ contain a node in ¢ . A path that
contains a node in ¢ is called blocked (by ¢ ), otherwise it is called active.

Definition: Let ª� = ( ���«ª� ) be a directed acyclic graph and  ��¬¡�� and ¢ three
disjoint subsets of nodes. ¢ d-separates   and ¡ in ª� , written £  ¥¤�¢¤g¡§¦¯®¨ ,
iff there is no path from a node in   to a node in ¡ along which the following two
conditions hold:

1. every node with converging edges either is in ¢ or has a descendant in ¢ ,

2. every other node is not in ¢ .

A path satisfying the two conditions above is said to be active,
otherwise it is said to be blocked (by ¢ ).

Conditional Independence

Definition: Let Ω be a (finite) sample space, ° a probability measure on Ω, and±³²¯´�²
and µ attributes with respective domains dom(

±
)
²
dom(

´
)
²
and dom( µ ).±

and
´

are called conditionally probabilistically independent given µ ,
written

±�¶ ¶¸·¹´º µ , iff»�¼¹½
dom(

±
) :
»�¾¿½

dom(
´

) :
»�À¿½

dom( µ ) :° (
±

=
¼ ²\´

=
¾ º µ =

À
) = ° (

±
=
¼ º µ =

À
) Á�° (

´
=
¾ º µ =

À
)

Equivalent formula:»�¼¹½
dom(

±
) :
»�¾¿½

dom(
´

) :
»�À¿½

dom( µ ) :° (
±

=
¼ º^´

=
¾ ² µ =

À
) = ° (

±
=
¼ º µ =

À
)Â Conditional independences make it possible to consider parts of a probability

distribution independent of others.Â Therefore it is plausible that a set of conditional independences may enable a
decomposition of a joint probability distribution.

Illustration of the (Semi-)Graphoid Axioms

decomposition: ÃÄ W
X

Z Y Å Ã W
Z Y Æ Ä

X
Z Y

weak union: ÃÄ W
X

Z Y Å ÃÄ Ç W
X

Z Y

contraction: ÃÄ Ç W
X

Z Y Æ Ã W
Z Y Å ÃÄ W

X
Z Y

intersection: ÃÄ È W
X

Z Y Æ ÃÄ Ç W
X

Z Y Å ÃÄ W
X

Z Y

É Similar to the properties of separation in graphs.É Idea: Represent conditional independence by separation in graphs.

Conditional (In)Dependence Graphs

Definition: Let ( Ê`Ë Ë¿ÌÍÊ�ÎZÊ ) be a three-place relation representing the set of con-
ditional independence statements that hold in a given distribution Ï over a set Ð
of attributes. An undirected graph Ñ = ( Ð�Ò`Ó ) over Ð is called a conditional
dependence graph or a dependence map w.r.t. Ï , iff for all disjoint subsetsÔ Ò¬Õ�Ò\ÖØ×ÙÐ of attributes Ô Ë Ë Ì Õ�Î�ÖÛÚÝÜ Ô Î^ÖÞÎ�Õ¹ß¬àáÒ
i.e., if Ñ captures by â -separation all (conditional) independences that hold in Ï
and thus represents only valid (conditional) dependences. Similarly, Ñ is called a
conditional independence graph or an independence map w.r.t. Ï , iff for
all disjoint subsets

Ô Ò©Õ�Ò\ÖØ×ãÐ of attributesÜ Ô Î�Ö�Î�Õ§ß¬à�Ú Ô Ë Ë Ì Õ�Î^ÖáÒ
i.e., if Ñ captures by â -separation only (conditional) independences that are valid
in Ï . Ñ is said to be a perfect map of the conditional (in)dependences in Ï , if it
is both a dependence map and an independence map.



Limitations of Graph Representations

Perfect directed map, no perfect undirected map:
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= ò 1 4ó

24
3ó

24
3ó

24
2ó

24ñ
= ò 2 2ó

24
3ó

24
3ó

24
4ó

24
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Directed Acyclic Graphs and Decompositions

Definition: A probability distribution úüû over a set ý of attributes is called
decomposable or factorizable w.r.t. a directed acyclic graph þÿ = ( ý���þ� )
over ý�� iff it can be written as a product of the conditional probabilities of the
attributes given their parents in þÿ , i.e., iff���

1 � dom( � 1) : �	�
� ����� � dom( � � ) :ú û ( ∧
i � û ��� = � � ) =

∏
i � û � ( ��� = � � ∣∣∣ ∧

j � parents ~G
(


i)

��� =
� � ) �

� 1 � 2 � 3

� 4 � 5

� 6 � 7

�
( � 1 =

�
1 �	�	�
�	��� 7 =

�
7)

=
�

( � 1 =
�
1) � � ( � 2 =

�
2
� � 1 =

�
1) � � ( � 3 =

�
3)� � ( � 4 =

�
4
� � 1 =

�
1 ��� 2 =

�
2)� � ( � 5 =

�
5
� � 2 =

�
2 ��� 3 =

�
3)� � ( � 6 =

�
6
� � 4 =

�
4 ��� 5 =

�
5)� � ( � 7 =

�
7
� � 5 =

�
5) �

Evidence Propagation in Graphical Models

� It is fairly easy to derive evidence propagation formulae for singly connected
networks (undirected trees, directed polytrees).� However, in practice, there are often be multiple paths connecting two vari-
ables, all of which may be needed for proper evidence propagation.� Propagating evidence along all paths can lead to wrong results
(multiple incorporation of the same evidence).� Solution (one out of many):
Turn the graph into a singly connected structure.

A
����

B
� � C

��
D
� �

A
���
BC
� �

D
� Merging attributes can make the

polytree algorithm applicable in
multiply connected networks.

Undirected Graphs and Decompositions

Definition: A probability distribution !�" over a set # of variables is called de-
composable or factorizable w.r.t. an undirected graph $ = ( #&%(' ) over# iff it can be written as a product of nonnegative functions on the maximal cliques
of $ . That is, let ) be a family of subsets of variable, such that the subgraphs
of $ induced by the sets *,+-) are the maximal cliques of $ . Then there exist
functions .0/ : 12/43 IR+

0 %2*5+6)7%98�: 1 + dom( ; 1) : <
<	< 8�:9=>+ dom( ;�= ) :!?" ( ∧@
i A " ;�B = :9B ) =

∏/ A9C .0/ ( ∧@
i A / ;�B = :�B ) <

; 1 ; 2

; 3 ; 4

; 5 ; 6

!?" ( ; 1 = : 1 %
<	<
<
%D; 6 = : 6)
= . @

1
@

2
@

3
( ; 1 = : 1 %�; 2 = : 2 %�; 3 = : 3)E . @

3
@

5
@

6
( ; 3 = : 3 %�; 5 = : 5 %�; 6 = : 6)E . @

2
@

4
( ; 2 = : 2 %�; 4 = : 4)E . @

4
@

6
( ; 4 = : 4 %�; 6 = : 6) <

Conditional Independence Graphs and Decompositions

Core Theorem of Graphical Models:
Let F?G be a strictly positive probability distribution on a set H of (discrete) vari-
ables. A directed or undirected graph I = ( H&J(K ) is a conditional independence
graph w.r.t. F G if and only if F G is factorizable w.r.t. IML
Definition: A Markov network is an undirected conditional independence
graph of a probability distribution F?G together with the family of positive func-
tions N0O of the factorization induced by the graph.

Definition: A Bayesian network is a directed conditional independence graph
of a probability distribution F0P together with the family of conditional probabilities
of the factorization induced by the graph.Q Sometimes the conditional independence graph is required to be minimal.Q For correct evidence propagation it is not required that the graph is minimal.

Evidence propagation may just be less efficient than possible.

Triangulation and Join Tree Construction

original
graph

1

3

5

2

4

6

triangulated
moral graph

1

3

5

2

4

6

maximal
cliques

1

3

5

2

4

6

join tree

2
1 4

1 4
3

3
5

4
3 6

R A singly connected structure is obtained by triangulating the graph and then
forming a tree of maximal cliques, the so-called join tree.R For evidence propagation a join tree is enhanced by so-called separators on
the edges, which are intersection of the connected nodes S junction tree.



Graph Triangulation

Algorithm: (graph triangulation)

Input: An undirected graph T = ( U&VXW ) Y
Output: A triangulated undirected graph T[Z = ( U&V(W[Z ) with W[Z?\]W>Y
1. Compute an ordering of the nodes of the graph using maximum cardinality

search, i.e., number the nodes from 1 to ^ = _ U`_ V in increasing order, always
assigning the next number to the node having the largest set of previously
numbered neighbors (breaking ties arbitrarily).

2. From a = ^ to a = 1 recursively fill in edges between any nonadjacent neighbors
of the node numbered a having lower ranks than a (including neighbors linked to
the node numbered a in previous steps). If no edges are added, then the original
graph is chordal; otherwise the new graph is chordal.

Reasoning in Join/Junction Trees

b Reasoning in join trees follows the same lines as shown in the simple example.b Multiple pieces of evidence from different branches may be incorporated into
a distribution before continuing by summing/marginalizing.
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Probabilistic Graphical Models: An Example

Danish Jersey Cattle Blood Type Determinationhikj hikjl l l lhnmohnmphnmphnmj ji ih hq rhs tikjhnuohnuphnuphnul l l l

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 29 20 21

21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.

Join Tree Construction

Algorithm: (join tree construction)

Input: A triangulated undirected graph v = ( w&xXy ) z
Output: A join tree v|{ = ( w|{ x(y[{ ) for vMz
1. Determine a numbering of the nodes of v using maximum cardinality search.

2. Assign to each clique the maximum of the ranks of its nodes.

3. Sort the cliques in ascending order w.r.t. the numbers assigned to them.

4. Traverse the cliques in ascending order and for each clique }�~ choose from the
cliques } 1 x	z
z	z
xX}�~ � 1 preceding it the clique with which it has the largest number
of nodes in common (breaking ties arbitrarily).

Building Graphical Models: Causal Modeling

Manual creation of a reasoning system based on a graphical model:

causal model of given domain�
conditional independence graph�

decomposition of the distribution�
evidence propagation scheme

heuristics!

formally provable

formally provable

� Problem: strong assumptions about the statistical effects of causal relations.

Danish Jersey Cattle Blood Type Determination

� Full 21-dimensional domain has 26 � 310 � 6 � 84 = 92 876 046 336 possible states.� Bayesian network requires only 306 conditional probabilities.� Example of a conditional probability table (attributes 2, 9, and 5):

sire true sire stated sire phenogroup 1
correct phenogroup 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32



Learning Graphical Models from Data

Given: A database of sample cases from a domain of interest.

Desired: A (good) graphical model of the domain of interest.� Quantitative or Parameter Learning� The structure of the conditional independence graph is known.� Conditional or marginal distributions have to be estimated by standard
statistical methods. (parameter estimation)� Qualitative or Structural Learning� The structure of the conditional independence graph is not known.� A good graph has to be selected from the set of all possible graphs.
(model selection)� Tradeoff between model complexity and model accuracy.

Naive Bayes Classifiers: Star-like Networks

� A naive Bayes classifier is a Bayesian network with a star-like structure.� The class attribute is the only unconditioned attribute.� All other attributes are conditioned on the class only.� The classifier may be augmented by additional edges between the attributes.
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Learning the Structure of Graphical Models from Data

� Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces
to be used to compute the (candidate) decomposition of the given distribution.� Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence
graphs and graphs that represent decompositions. It has the advantage that a
single conditional independence test, if it fails, can exclude several candidate
graphs.� Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph an
attribute is more strongly dependent on adjacent attributes than on attributes
that are not directly connected to them.

Danish Jersey Cattle Blood Type Determination

A fraction of the database of sample cases:

y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6

y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7

y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0

y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5

y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7
... ...  21 attributes  500 real world sample cases  A lot of missing values (indicated by **)

Naive Bayes Classifiers

¡ Consequence: Manageable amount of data to store.
Store distributions ¢ ( £ = ¤X¥ ) and ¦ 1 §©¨>§«ª : ¢ ( ¬� = ®¯M°n£ = ¤X¥ ).¡ Classification: Compute ¢ ( £ = ¤ ¥ ) ± ∏ ² =1 ¢ ( ¬  = ®  °n£ = ¤ ¥ ) for all ¤ ¥
and predict the class ¤X¥ for which this value is largest.

Estimation of Probabilities:¡ Here: restriction to symbolic attributes.

ˆ¢ ( ¬� = ®¯M°n£ = ¤(¥ ) =
#( ¬  = ® 9³ £ = ¤ ¥ ) + ´

#( £ = ¤ ¥ ) + µ�¶
j
´´ is called Laplace correction.´ = 0: Maximum likelihood estimation.

Common choices: ´ = 1 or ´ = 1
2.

Direct Test for Decomposability: Relational
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Comparing Probability Distributions

Definition: Let ¿ 1 and ¿ 2 be two strictly positive probability distributions on the
same set À of events. ThenÁ

KLdiv(¿ 1 Â ¿ 2) =
∑Ã�Ä9Å ¿ 1( Æ ) log2

¿ 1( Æ )¿ 2( Æ )

is called the Kullback-Leibler information divergence of ¿ 1 and ¿ 2.Ç The Kullback-Leibler information divergence is non-negative.Ç It is zero if and only if ¿ 1 È ¿ 2.Ç Therefore it is plausible that this measure can be used to assess the quality of
the approximation of a given multi-dimensional distribution ¿ 1 by the distri-
bution ¿ 2 that is represented by a given graph:
The smaller the value of this measure, the better the approximation.

Evaluation Measures and Search Methods

É An exhaustive search over all graphs is too expensive:Ê 2(n
2
) possible undirected graphs for Ë attributes.Ê¸Ì ( Ë ) = Í∑Î

=1

( Ï 1)
Î
+1

( Í Î )2
Î
( ÍÑÐ Î ) Ì ( Ë6ÏÓÒ ) possible directed acyclic graphs.

É Therefore all learning algorithms consist of

an evaluation measure (scoring function), e.g.Ê Hartley information gain (relational networks)Ê Shannon information gain, K2 metric (probabilistic networks)

and a (heuristic) search method, e.g.Ê conditional independence searchÊ greedy search (spanning tree or K2 algorithm)Ê guided random search (simulated annealing, genetic algorithms)

Marginal and Conditional Independence Tests

Ô The Hartley information gain can be used directly to test for (approximate)
marginal independence.

attributes relative number of Hartley information gain
possible value combinations

color, shape 6
3 Õ 4 = 1

2 = 50% log2 3 + log2 4 Ö log2 6 = 1

color, size 8
3 Õ 4 = 2

3 × 67% log2 3 + log2 4 Ö log2 8 × 0 Ø 58

shape, size 5
3 Õ 3 = 5

9 × 56% log2 3 + log2 3 Ö log2 5 × 0 Ø 85Ô In order to test for (approximate) conditional independence:Ù Compute the Hartley information gain for each possible instantiation of
the conditioning attributes.Ù Aggregate the result over all possible instantiations, for instance, by simply
averaging them.

Direct Test for Decomposability: Probabilistic
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Upper numbers: The Kullback-Leibler information divergence of the original
distribution and its approximation.

Lower numbers: The binary logarithms of the probability of an example database
(log-likelihood of data).

Measuring Dependence Strength: Relational

ÜÝÜ ÜÝÜÜ Ü
Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 Þ 3 ß 58
coordinate pair: log2 6 Þ 2 ß 58

gain: log2 12 à log2 6 = log2 2 = 1

Definition: Let á and â be two attributes and ã a discrete possibility measure
with äæå>ç dom( á ) : äæè�ç dom( â ) : ã ( á = å2é(â = è ) = 1. Thenê (Hartley)

gain ( áëé(â ) = log2

( ∑ ìní
dom( î ) ã ( á = å )) + log2

( ∑ ï(í
dom( ð ) ã ( â = è ))à log2

( ∑ ìní
dom( î )

∑ ïDí
dom( ð ) ã ( á = å2é(â = è ))

= log2

(∑ ì¯í
dom( î ) ã ( á = å )) ñ (∑ ïDí

dom( ð ) ã ( â = è ))
∑ ìní

dom( î )
∑ ï(í

dom( ð ) ã ( á = å2éXâ = è ) é
is called the Hartley information gain of á and â w.r.t. ã .

Conditional Independence Tests: Relational
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õ color Hartley information gain

log2 1 + log2 2 ÷ log2 2 = 0

log2 2 + log2 3 ÷ log2 4 ø 0 ù 58
log2 1 + log2 1 ÷ log2 1 = 0

log2 2 + log2 2 ÷ log2 2 = 1

average: ø 0 ù 40

shape Hartley information gain

log2 2 + log2 2 ÷ log2 4 = 0

log2 2 + log2 1 ÷ log2 2 = 0

log2 2 + log2 2 ÷ log2 4 = 0

average: = 0

size Hartley information gain

large log2 2 + log2 1 ÷ log2 2 = 0

medium log2 4 + log2 3 ÷ log2 6 = 1

small log2 2 + log2 1 ÷ log2 2 = 0

average: ø 0 ù 33



Measuring Dependence Strength: Probabilistic

Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy ú = ûýü∑þ
=1 ÿ þ log2 ÿ þ (Shannon 1948)�

gain( ����� ) = ú ( � ) û ú ( ����� )

=

︷ ︸︸ ︷û ü A∑þ
=1 ÿ þ 	 log2 ÿ þ 	 û

︷ ︸︸ ︷ü B∑

=1 ÿ 	 
 

 û ü A∑þ
=1 ÿ þ � 
 log2 ÿ þ � 
 

ú ( � ) Entropy of the distribution on attribute �ú ( ��� � ) Expected entropy of the distribution on attribute �
if the value of attribute � becomes knownú ( � ) û ú ( ��� � ) Expected reduction in entropy or information gain

Question/Coding Schemes
( � 1) = 0 � 10 � 

( � 2) = 0 � 15 � 
( � 3) = 0 � 16 � 

( � 4) = 0 � 19 � 
( � 5) = 0 � 40

Shannon entropy: � ∑ � 
( � � ) log2


( � � ) = 2 � 15 bit/symbol

Linear Traversal

� 4 ��� 5� 3 ��� 4 ��� 5� 2 ��� 3 ��� 4 ��� 5� 1 ��� 2 ��� 3 ��� 4 ��� 5

0.10 0.15 0.16 0.19 0.40� 1 � 2 � 3 � 4 � 5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets� 1 ��� 2 ��� 3 ��� 4 ��� 5
0.25 0.75� 1 ��� 2 � 3 ��� 4 ��� 5

0.59� 4 ��� 5
0.10 0.15 0.16 0.19 0.40� 1 � 2 � 3 � 4 � 5

2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830

Question/Coding Schemes�
( � 1) = 0 � 10 � �

( � 2) = 0 � 15 � �
( � 3) = 0 � 16 � �

( � 4) = 0 � 19 � �
( � 5) = 0 � 40

Shannon entropy: � ∑ � �
( � � ) log2

�
( � � ) = 2 � 15 bit/symbol

Shannon–Fano Coding (1948)� 1 ��� 2 ��� 3 ��� 4 ��� 5
0.25

0.41

� 1 ��� 2
� 1 ��� 2 ��� 3 0.59� 4 ��� 5

0.10 0.15 0.16 0.19 0.40� 1 � 2 � 3 � 4 � 5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)� 1 ��� 2 ��� 3 ��� 4 ��� 5
0.60� 1 ��� 2 ��� 3 ��� 4

0.25 0.35� 1 ��� 2 � 3 ��� 4
0.10 0.15 0.16 0.19 0.40� 1 � 2 � 3 � 4 � 5

3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977

Interpretation of Shannon Entropy

� Let � = ��� 1 �! " ! "� �"#%$ be a finite set of alternatives having positive probabilities&
( �"' ), ( = 1 �! ! " "�*) , satisfying

∑ #' =1
&

( �!' ) = 1.� Shannon Entropy: +
( � ) = , #∑' =1

&
( � ' ) log2

&
( � ' )� Intuitively: Expected number of yes/no questions that have to be

asked in order to determine the obtaining alternative.- Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.- A better question scheme than asking for one alternative after the other
can easily be found: Divide the set into two subsets of about equal size.- Ask for containment in an arbitrarily chosen subset.- Apply this scheme recursively . number of questions bounded by / log2 )10 .

Question/Coding Schemes

2 Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets 3 high expected number of questions.2 Good question schemes take the probability of the alternatives into account.2 Shannon-Fano Coding (1948)4 Build the question/coding scheme top-down.4 Sort the alternatives w.r.t. their probabilities.4 Split the set so that the subsets have about equal probability

(splits must respect the probability order of the alternatives).2 Huffman Coding (1952)4 Build the question/coding scheme bottom-up.4 Start with one element sets.4 Always combine those two sets that have the smallest probabilities.

Question/Coding Schemes

5 It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)5 Only if the obtaining alternative has to be determined in a sequence of (inde-
pendent) situations, this scheme can be improved upon.5 Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination
of alternatives.5 Although this enlarges the question/coding scheme, the expected number of
questions per identification is reduced (because each interrogation identifies the
obtaining alternative for several situations).5 However, the expected number of questions per identification cannot be made
arbitrarily small. Shannon showed that there is a lower bound, namely the
Shannon entropy.



Interpretation of Shannon Entropy6
( 7 1) = 1

2 8 6
( 7 2) = 1

4 8 6
( 7 3) = 1

8 8 6
( 7 4) = 1

16 8 6
( 7 5) = 1

16

Shannon entropy: 9 ∑ : 6
( 7 : ) log2

6
( 7 : ) = 1 ; 875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:9 ∑: 6 ( 7 : ) log2

6
( 7 : )

=
∑: 6

( 7 : )
︸ ︷︷ ︸

occurrence
probability

< log2

16
( 7 : )︸ ︷︷ ︸

path length
in tree

;
In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

7 4 8 7 57 3 8 7 4 8 7 57 2 8 7 3 8 7 4 8 7 57 1 8 7 2 8 7 3 8 7 4 8 7 5
1

2

1

4

1

8

1

16

1

167 1 7 2 7 3 7 4 7 5
1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1

Conditional Independence Tests: Probabilistic

= There are no marginal independences, although the dependence of color and
size is rather weak.= Conditional independence tests may be carried out by summing the mutual
information for all instantiations of the conditioning variables:>

mut( ?�@�ACB�D )

=
∑E*F dom( G )

H
( I ) ∑J�F dom( K )

∑L F dom( M )

H
( N%@�OPBQI ) log2

H
( N%@�OPB�I )H

( NRB�I ) H ( OPBQI ) @
where

H
( I ) is an abbreviation of

H
( D = I ) etc.= Since

>
mut(color @ size B shape) = 0 indicates the only conditional independence,

we get the following learning result:
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Conditional Independence Tests: Drawbacks

S The conditional independence graph construction algorithm presupposes that
there is a perfect map. If there is no perfect map, the result may be invalid.
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47S Independence tests of high order, i.e., with a large number of conditions,
may be necessary.S There are approaches to mitigate these drawbacks.
(For example, the order is restricted and all tests of higher order are assumed
to fail, if all tests of lower order failed.)

Mutual Information for the Example

projection to
subspace

product of
marginals

s m l s m l

small
medium

large

small
medium

large

mutual
information

0.429 bit
40 180 20 160
12 6 120 102
168 144 30 18

88 132 68 112
53 79 41 67
79 119 61 101

0.211 bit
20 180 200
40 160 40
180 120 60

96 184 120
58 110 72
86 166 108

0.050 bit
50 115 35 100
82 133 99 146
88 82 36 34

66 99 51 84
101 152 78 129
53 79 41 67

Conditional Independence Tests: General Algorithm

Algorithm: (conditional independence graph construction)

1. For each pair of attributes h and i , search for a set jlk]monCprqts!h�u�i�v such
that hxw wyiCztj{k]m holds in ̂| , i.e., h and i are independent in ̂| conditioned
on j k]m . If there is no such j k]m , connect the attributes by an undirected edge.

2. For each pair of non-adjacent variables h and i with a common neighbour }
(i.e., } is adjacent to h as well as to i ), check whether }�~�j k]m .� If it is, continue.� If it is not, add arrowheads pointing to } , i.e., h���}���i .

3. Recursively direct all undirected edges according to the rules:� If for two adjacent variables h and i there is a strictly directed path from h
to i not including h���i , then direct the edge towards i .� If there are three variables h , i , and } with h and i not adjacent, i���} ,
and h���} , then direct the edge }���i .

Strength of Marginal Dependences: Relational

� Learning a relational network consists in finding those subspace, for which the
intersection of the cylindrical extensions of the projections to these subspaces
approximates best the set of possible world states, i.e. contains as few additional
states as possible.� Since computing explicitly the intersection of the cylindrical extensions of the
projections and comparing it to the original relation is too expensive, local
evaluation functions are used, for instance:

subspace color � shape shape � size size � color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%� The relational network can be obtained by interpreting the relative numbers

as edge weights and constructing the minimal weight spanning tree.



Strength of Marginal Dependences: Probabilistic

� Results for the simple example:�
mut(color � shape) = 0 � 429 bit�
mut(shape � size) = 0 � 211 bit�
mut(color � size) = 0 � 050 bit� Applying the Kruskal algorithm yields as a learning result:

�
�

�
�color

�
�

�
�shape

�
�

�
�size� It can be shown that this approach always yields the best possible spanning

tree w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).� In an extended form this also holds for certain classes of graphs
(for example, tree-augmented naive Bayes classifiers).� For more complex graphs, the best graph need not be found
(there are counterexamples, see below).

Strength of Marginal Dependences: Drawbacks
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Danish Jersey Cattle Blood Type Determination

network edges params. train test

indep. 0 59 � 19921 � 2 � 20087 � 2
orig. 22 219 � 11391 � 0 � 11506 � 1

Optimum Weight Spanning Tree Construction

measure edges params. train test� (Shannon)
gain 20.0 285.9 � 12122 � 6 � 12339 � 6� 2 20.0 282.9 � 12122 � 6 � 12336 � 2

Greedy Parent Selection w.r.t. a Topological Order

measure edges add. miss. params. train test� (Shannon)
gain 35.0 17.1 4.1 1342.2 � 11229 � 3 � 11817 � 6� 2 35.0 17.3 4.3 1300.8 � 11234 � 9 � 11805 � 2

K2 23.3 1.4 0.1 229.9 � 11385 � 4 � 11511 � 5� (rel)
red 22.5 0.6 0.1 219.9 � 11389 � 5 � 11508 � 2

Strength of Marginal Dependences: General Algorithms

  Optimum Weight Spanning Tree Construction¡ Compute an evaluation measure on all possible edges
(two-dimensional subspaces).¡ Use the Kruskal algorithm to determine an optimum weight spanning tree.  Greedy Parent Selection (for directed graphs)¡ Define a topological order of the attributes (to restrict the search space).¡ Compute an evaluation measure on all single attribute hyperedges.¡ For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.¡ Greedily select a parent according to the evaluation measure.¡ Repeat the previous two steps until no improvement results from them.

Strength of Marginal Dependences: Drawbacks
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if there is more than one path connecting two attributes.¯ Here: the edge °�±�² is selected first.

Fields of Application (DaimlerChrysler AG)

³ Improvement of Product Quality by Finding Weaknesses´ Learn decision trees or inference network
for vehicle properties and faults.´ Look for unusual conditional fault frequencies.´ Find causes for these unusual frequencies.´ Improve construction of vehicle.³ Improvement of Error Diagnosis in Garages´ Learn decision trees or inference network
for vehicle properties and faults.´ Record properties of new faulty vehicle.´ Test for the most probable faults.



A Simple Approach to Fault Analysis

µ Check subnets consisting of an attribute and its parent attributes.µ Select subnets with highest deviation from independent distribution.
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Fault Data

Summary

¶ Decomposition: Under certain conditions a distribution · (e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic

knowledge about this domain, can be decomposed into a set ¸Q· 1 ¹!º"º!º"¹ ·"»!¼ of
(overlapping) distributions on lower-dimensional subspaces.¶ Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution · .¶ Graphical Model: The decomposition is represented by a graph (in the
sense of graph theory). The edges of the graph indicate the paths along which
evidence has to be propagated. Efficient and correct evidence propagation
algorithms can be derived, which exploit the graph structure.¶ Learning from Data: There are several highly successful approaches to
learn graphical models from data, although all of them are based on heuristics.
Exact learning methods are usually too costly.

Example Subnet

Influence of special equipment on battery faults:

(fictitious) frequency of
battery faults

electrical sliding roof
with

without

air conditioning
with without

8 % 3 %

3 % 2 %½ Significant deviation from independent distribution.½ Hints to possible causes and improvements.½ Here: Larger battery may be required, if an air conditioning system.
and an electrical sliding roof are built in.

(The dependencies and frequencies of this example are fictitious, true numbers are confidential.)


